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I. INTRODUCTION

Due largely to the nature of multiobjective evolutionary algorithms (MOEAs), their behaviors and performances

are mainly studied experimentally. In the past 20 years, Several continuous multiobjective optimization problem

(MOP) test suites have been proposed the evolutionary computation community [1]-[9], which have played an crucial

role in developing and studying MOEAs. However, more test instances are needed to resemble complicated real-life

problems and thus stimulate the MOEA research. This report suggest a set of unconstrained (bound constrained)

MOP test instances and a set of general constrained test instances for the CEC09 algorithm contest. It also provides

performance assessment guidelines.

II. UNCONSTRAINED (BOUND CONSTRAINED) MOP TEST PROBLEMS

Unconstrained Problem 1 (F2 in [9])

The two objectives to be minimized:

f1 = x1 +
2
|J1|

∑

j∈J1

[xj − sin(6πx1 +
jπ

n
)]2

f2 = 1−√x1 +
2
|J2|

∑

j∈J2

[xj − sin(6πx1 +
jπ

n
)]2

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

The search space is [0, 1]× [−1, 1]n−1.

Its PF is

f2 = 1−
√

f1, 0 ≤ f1 ≤ 1.

Its PS is

xj = sin(6πx1 +
jπ

n
), j = 2, . . . , n, 0 ≤ x1 ≤ 1.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 1.

Unconstrained Problem 2 (F5 in [9])

The two objectives to be minimized:

f1 = x1 +
2
|J1|

∑

j∈J1

y2
j

f2 = 1−√x1 +
2
|J2|

∑

j∈J2

y2
j

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n}, and

yj =





xj − [0.3x2
1 cos(24πx1 + 4jπ

n ) + 0.6x1] cos(6πx1 + jπ
n ) j ∈ J1

xj − [0.3x2
1 cos(24πx1 + 4jπ

n ) + 0.6x1] sin(6πx1 + jπ
n ) j ∈ J2
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Fig. 1. Illustration of the PF and the PS of UF1.

Its search space is [0, 1]× [−1, 1]n−1.

Its PF is

f2 = 1−
√

f1, 0 ≤ f1 ≤ 1.

Its PS is

xj =




{0.3x2

1 cos(24πx1 + 4jπ
n ) + 0.6x1} cos(6πx1 + jπ

n ) j ∈ J1

{0.3x2
1 cos(24πx1 + 4jπ

n ) + 0.6x1} sin(6πx1 + jπ
n ) j ∈ J2

0 ≤ x1 ≤ 1.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 2.
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Fig. 2. Illustration of the PF and the PS of UF2.
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Unconstrained Problem 3 (F8 in [9])

The two objectives to be minimized:

f1 = x1 +
2
|J1| (4

∑

j∈J1

y2
j − 2

∏

j∈J1

cos(
20yjπ√

j
) + 2)

f2 = 1−√x1 +
2
|J2| (4

∑

j∈J2

y2
j − 2

∏

j∈J2

cos(
20yjπ√

j
) + 2)

where J1 and J2 are the same as those of F1, and

yj = xj − x
0.5(1.0+

3(j−2)
n−2 )

1 , j = 2, . . . , n,

The search space is [0, 1]n

Its PF is

f2 = 1−
√

f1, 0 ≤ f1 ≤ 1.

Its PS is

xj = x
0.5(1.0+

3(j−2)
n−2 )

1 , j = 2, . . . , n, 0 ≤ x1 ≤ 1.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 3.
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Fig. 3. Illustration of the PF and the PS of UF3.

Unconstrained Problem 4

The two objectives to be minimized:

f1 = x1 +
2
|J1|

∑

j∈J1

h(yj)

f2 = 1− x2
1 +

2
|J2|

∑

j∈J2

h(yj)
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where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n},

yi = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n.

and

h(t) =
|t|

1 + e2|t| .

Its search space [0, 1]× [−2, 2]n−1

Its PF is

f2 = 1− f2
2 , 0 ≤ f1 ≤ 1.

Its PS is

xj = sin(6πx1 +
jπ

n
), j = 2, . . . , n. 0 ≤ x1 ≤ 1.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 4.
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Fig. 4. Illustration of the PF and the PS of UF4.

Unconstrained Problem 5

The two objectives to be minimized:

f1 = x1 +(
1

2N
+ ε)| sin(2Nπx1)|+ 2

|J1|
∑

j∈J1

h(yj)

f2 = 1− x1 +(
1

2N
+ ε)| sin(2Nπx1)|+ 2

|J2|
∑

j∈J2

h(yj)
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where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}. N is an integer, ε > 0,

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n

and

h(t) = 2t2 − cos(4πt) + 1.

The search space is [0, 1]× [−1, 1]n−1.

Its PF has 2N + 1 Pareto Optimal solutions:

(
i

2N
, 1− i

2N
)

for i = 0, 1, . . . , 2N .

N = 10, ε = 0.1 and n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 5.
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Fig. 5. Illustration of the PF and the PS of UF5.

Unconstrained Problem 6

The two objectives to be minimized:

f1 = x1 +max{0, 2(
1

2N
+ ε) sin(2Nπx1)}+

2
|J1| (4

∑

j∈J1

y2
j − 2

∏

j∈J1

cos(
20yjπ√

j
) + 2)

f2 = 1− x1 +max{0, 2(
1

2N
+ ε) sin(2Nπx1)}+

2
|J2| (4

∑

j∈J2

y2
j − 2

∏

j∈J2

cos(
20yjπ√

j
) + 2)

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n}, and

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n.
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The search space is [0, 1]× [−1, 1]n−1.

Its PF consists of

• one isolated point, (0, 1), and

• N disconnected parts:

f2 = 1− f1, f1 ∈
N⋃

i=1

[
2i− 1
2N

,
2i

2N
].

N = 2, ε = 0.1 and n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 6.
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Fig. 6. Illustration of the PF and the PS of UF6.

Unconstrained Problem 7

The two objectives to be minimized:

f1 = 5
√

x1 +
2
|J1|

∑

j∈J1

y2
j

f2 = 1− 5
√

x1 +
2
|J2|

∑

j∈J2

y2
j

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n} and

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n

The search space is [0, 1]× [−1, 1]n−1.

Its PF is

f2 = 1− f1, 0 ≤ f1 ≤ 1.
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Its PS is

xj = sin(6πx1 +
jπ

n
), j = 2, . . . , n, 0 ≤ x1 ≤ 1.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 7.
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Fig. 7. Illustration of the PF and the PS of UF7.

Unconstrained Problem 8 (F6 in [9])

The three objectives to be minimized:

f1 = cos(0.5x1π) cos(0.5x2π) +
2
|J1|

∑

j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f2 = cos(0.5x1π) sin(0.5x2π) +
2
|J2|

∑

j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f3 = sin(0.5x1π) +
2
|J3|

∑

j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))2

where

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}.

The search space is [0, 1]2 × [−2, 2]n−2.

Its PF is f2
1 + f2

2 + f3
3 = 1, 0 ≤ f1, f2, f3 ≤ 1.

Its PS is xj = 2x2 sin(2πx1 + jπ
n ), j = 3, . . . , n.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 8.
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Fig. 8. Illustration of the PF and the PS of UF8.

Unconstrained Problem 9

The three objectives to be minimized:

f1 = 0.5[max{0, (1 + ε)(1− 4(2x1 − 1)2)}+ 2x1]x2 +
2
|J1|

∑

j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f2 = 0.5[max{0, (1 + ε)(1− 4(2x1 − 1)2)} − 2x1 + 2]x2 +
2
|J2|

∑

j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f3 = 1− x2 +
2
|J3|

∑

j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))2

where

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3},
and

ε = 0.1

ε can take any other positive values.

The search space is [0, 1]2 × [−2, 2]n−2.

The PF has two parts. The first part is

0 ≤ f3 ≤ 1,

0 ≤ f1 ≤ 1
4
(1− f3),

f2 = 1− f1 − f3;
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and the second one is

0 ≤ f3 ≤ 1,

3
4
(1− f3) ≤ f1 ≤ 1,

f2 = 1− f1 − f3.

The PS also has two disconnected parts:

x1 ∈ [0, 0.25] ∪ [0.75, 1], 0 ≤ x2 ≤ 1,

xj = 2x2 sin(2πx1 +
jπ

n
), j = 3, . . . , n.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 9.
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Fig. 9. Illustration of the PF and the PS of UF9.

Unconstrained Problem 10

The three objectives to be minimized:

f1 = cos(0.5x1π) cos(0.5x2π) +
2
|J1|

∑

j∈J1

[4y2
j − cos(8πyj) + 1]

f2 = cos(0.5x1π) sin(0.5x2π) +
2
|J2|

∑

j∈J1

[4y2
j − cos(8πyj) + 1]

f3 = sin(0.5x1π) +
2
|J3|

∑

j∈J1

[4y2
j − cos(8πyj) + 1]

where

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
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J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3},
and

yj = xj − 2x2 sin(2πx1 +
jπ

n
), j = 3, . . . , n

The search space is [0, 1]2 × [−2, 2]n−2.

Its PF is f2
1 + f2

2 + f3
3 = 1, 0 ≤ f1, f2, f3 ≤ 1

Its PS is xj = 2x2 sin(2πx1 + jπ
n ), j = 3, . . . , n.

n = 30 in the CEC 09 algorithm contest.

Its PF and PS are illustrated in Fig. 10.
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Fig. 10. Illustration of the PF and the PS of UF10.

April 20, 2009 DRAFT



12 
 

 
In this report, we also include 3 five-objective optimization problems. We assume that the optimization 
problems under consideration involve 5 objective functions f1,..f5 that are all to be minimized. 
We select two problems from two immensely popular test suites, DTLZ [2, 3], as well as one test functions 
of the proposed WFG test suite [5].  
However, the original DTLZ test suites have the following problems: 

• For all problems, the global optimum has the same parameter values for different 
variables/dimensions 

• The global optimum lies in the center of the search range 
• The global optimum lies on the bounds 
• All of these problems are separable 

To overcome these shortcomings, we rotated the original DTLZ problem. 
f(z): original function.  Search range [zmin , zmax] 
F(x): new extended function.  Search range [xmin, xmax ] 
D: dimension 

[ ]1 2, ,... Dd d d=d
 : the extended length of the lower bound 

[ ]1 2, ,... Dλ λ λ=λ
 : the scale factor 

[ ]1 1, ,... Dp p p=p : the penalty value 
 
To overcome the shortcomings of the DTLZ test functions for which the global optimum lies on the lower 
bound, or in the center of the search range, we extend the lower bound zmin by d. Then, for the solution in 
the extended region, the function value is obtained by mapping and stretching. 

( )( ) ( ) ( ) _f S psum f f bias′ ′ ′= +z z    

where 
,                                  z min
min ( min ),  z min

i i
i

i i i i i

z z
z

z z z zλ
≥⎧′ = ⎨ + − <⎩

i

i
,   

2( )
1 exp( )

S psum
psum

=
+ − , { }2

I , 1, 2,...iipsum p I D∈= ⊆∑ (I is a set of all variables included 

in the objective function f(x)) 
Here the constant parameter vector λ is used to make the searching region not symmetric with respect to 
the variable. 
  
Here the stretching function S is used to guarantee that the objective function values of solutions in the 
extended region are always worse than those in the original region, i.e., the Pareto Optimal front remains 
unchanged.  This assumption holds true on the condition that  f>0. Therefore we shift  f  to f + f_bias to 
make sure that all function values are positive.  The range of the function S is [2, 3]. When one solution in 
the extended region is near the mapping center, there will be psum→0 and S→1. On the contrary, if the 
solution is far from the mapping center, S→2. Thus we enlarge the objective value in the extended region 
whilst at the same time keeping the function connected.  
The penalty value pi in each variable is calculated as:  

0,                       z min
,    1, 2,...,min / ,  z min

i i
i

i i i i i

z
p i Dz z d z

≥⎧= =⎨ − <⎩
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After extending the region, rotated the parameter space by vector matrix M, and then the new function: 

( ){ ( ) 1          for all min max( ) ,   1, 2,...( ) ( ) 1               otherwise    
m i i i

m
m m

f x x xF mS psum f
′ + ≤ ≤= =′ +

zx z M  , =z Mx  

where 
2( )

1 exp( )
S psum

psum
=

+ − , { }2
I , 1, 2,...iipsum p I D∈= ⊆∑  

min ( min ),      z min             
,                                     zmin max
max ( max ),    z max  

i i i i i i

i i i

i i i i i i

z z z z
z z z

z z z z

λ

λ

+ − <⎧
⎪′ = ≤ ≤⎨
⎪ − − >⎩

i iz       

min ,      z min              
0,                  zmin max

max ,    z max  

i i i i

i i ii

i i i i

z z z
z zp

z z z

− <⎧
⎪ ≤ ≤= ⎨
⎪ − >⎩

 

1,2,...,i D=  
M: linear transformation orthogonal matrix, with condition number=1. 
According to the above description, we extended and rotated DTLZ2 and DTLZ3, obtaining 
R2_DTLZ2_M5 and R2_DTLZ3_M5. 
 

Unconstrained Problem 11 

New Extended Rotated DTLZ2 (R2_DTLZ2_M5) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 2 2 1
1

1 1 2 2 1

1 2 2
2

1 ( ) cos 2 cos 2 cos 2 cos 2 1,                          0
( )

( ) 1 ( ) cos 2 cos 2 cos 2 cos 2 1 ,    otherwise

1 ( ) cos 2 cos 2 cos 2 sin
( )

M M M

M M M

M M M

g z z z z z
f

S psum g z z z z

g z z z z
f

π π π π
π π π π

π π π

− −

− −

−

⎧ + ′ ′ ′ ′ +⎪= ⎨ + ′ ′ ′ ′ +⎪⎩
+ ′ ′ ′

=

x
x

x

x
x

K

K

K

i ≥

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

2 1 2 2 1

1 2 2
3

2 1,                           0
( ) 1 ( ) cos 2 cos 2 cos 2 sin 2 1 ,    otherwise

1 ( ) cos 2 cos 2 sin 2 1,                                                
( )

i

M M M

M M

z
S psum g z z z z

g z z z
f

π
π π π π

π π π

−

− −

−

⎧ ′ + ≥⎪
⎨ + ′ ′ ′ ′ +⎪⎩

+ ′ ′ ′ +
=

x

x
x

K

K

( ) ( ) ( ) ( )( )

( ) ( ) ( )

3 1 2 2

1 2
1

 0
( ) 1 ( ) cos 2 cos 2 sin 2 1 ,                          otherwise

    
1 ( ) cos 2 sin 2 1,                                                                       

( )

i

M M

M
M

z
S psum g z z z

g z z
f

π π π

π π

−

−

⎧ ≥⎪
⎨ + ′ ′ ′ +⎪⎩

+ ′ ′ +
=

x

x
x

K

M

( ) ( ) ( )( )
( ) ( )

1 1 2

1

   0
( ) 1 ( ) cos 2 sin 2 1 ,                                              otherwise

1 ( ) sin 2 1,                                                                          
( )

i

M M

M
M

z
S psum g z z

g z
f

π π

π

−

⎧ ≥⎪
⎨ + ′ ′ +⎪⎩

+ ′ +
=

x

x
x

( ) ( )( )1

                    0
( ) 1 ( ) sin 2 1 ,                                                                       otherwise

i

M M

z
S psum g z π

⎧ ≥⎪
⎨ + ′ +⎪⎩ x

 

( ) ( )2
0.5

i M
M ix

g z
∈

= ′ −∑ X
x  

where 

,      0
,       0 1

,          1

i i i

i i i

i i i

z z
z z z

z z

λ

λ

− <⎧
⎪′ = ≤ ≤⎨
⎪ >⎩

 ,   

,          0
,    1, 2,...,0,        0 1

1,       1

i i

i i

i i

z z
p i Dz

z z

− <⎧
⎪= =≤ ≤⎨
⎪ − >⎩

 

 

November 19, 2008                                                                                                                                                                         DRAFT 



14 
 

1 2 1 2,   [ , , ], [ , , ]D Dx x x z z z= = =z Mx x zK K  

The Pareto-optimal solutions correspond to
* 0.5Mx = and all the objective function values must satisfy the 

following condition: 
* 2

1

( ) 1
M

i
i

f
=

=∑ , and we include the Pareto-optimal front data in the folder. 

 
D : dimension 

[ ]1 2, ,... Dλ λ λ=λ
 : the scale factor 

[ ]1 1, ,... Dp p p=p : the penalty value 

[ ]min , maxi i ix x x∈ , [ ]1 2min , min ,... minDx x x=xmin  and 

[ ]1 2max max , max ,... maxDx x x=x   
Data file: 
30D 

Name Variable 
R2_ DTLZ2_M_30D.dat M  30*30 matrix 
R2_ DTLZ2_bound_30D.dat 2*30 matrix 

1st row: xmin 
2nd row: xmax 

R2_ DTLZ2_lamda_30D.dat λ  1*30D vector 
 
 
Unconstrained Problem 12 

 New Extended Rotated DTLZ3 (R2_DTLZ3_M5) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 2 2 1
1

1 1 2 2 1

1 2 2
2

1 ( ) cos 2 cos 2 cos 2 cos 2 1,                          0
( )

( ) 1 ( ) cos 2 cos 2 cos 2 cos 2 1 ,    otherwise

1 ( ) cos 2 cos 2 cos 2 sin
( )

M M M

M M M

M M M

g z z z z z
f

S psum g z z z z

g z z z z
f

π π π π
π π π π

π π π

− −

− −

−

⎧ + ′ ′ ′ ′ +⎪= ⎨ + ′ ′ ′ ′ +⎪⎩
+ ′ ′ ′

=

x
x

x

x
x

K

K

K

i ≥

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

2 1 2 2 1

1 2 2
3

2 1,                           0
( ) 1 ( ) cos 2 cos 2 cos 2 sin 2 1 ,    otherwise

1 ( ) cos 2 cos 2 sin 2 1,                                                
( )

i

M M M

M M

z
S psum g z z z z

g z z z
f

π
π π π π

π π π

−

− −

−

⎧ ′ + ≥⎪
⎨ + ′ ′ ′ ′ +⎪⎩

+ ′ ′ ′ +
=

x

x
x

K

K

( ) ( ) ( ) ( )( )

( ) ( ) ( )

3 1 2 2

1 2
1

 0
( ) 1 ( ) cos 2 cos 2 sin 2 1 ,                          otherwise

    
1 ( ) cos 2 sin 2 1,                                                                       

( )

i

M M

M
M

z
S psum g z z z

g z z
f

π π π

π π

−

−

⎧ ≥⎪
⎨ + ′ ′ ′ +⎪⎩

+ ′ ′ +
=

x

x
x

K

M

( ) ( ) ( )( )
( ) ( )

1 1 2

1

   0
( ) 1 ( ) cos 2 sin 2 1 ,                                              otherwise

1 ( ) sin 2 1,                                                                          
( )

i

M M

M
M

z
S psum g z z

g z
f

π π

π

−

⎧ ≥⎪
⎨ + ′ ′ +⎪⎩

+ ′ +
=

x

x
x

( ) ( )( )1

                    0
( ) 1 ( ) sin 2 1 ,                                                                       otherwise

i

M M

z
S psum g z π

⎧ ≥⎪
⎨ + ′ +⎪⎩ x

 

where ( ) ( ) ( )( )( )2100 0.5 cos 20 0.5
i M

M M i ix
g z π

∈
= + − − −∑ X

x x z  
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where 

,      0
,       0 1

,          1

i i i

i i i

i i i

z z
z z z

z z

λ

λ

− <⎧
⎪′ = ≤ ≤⎨
⎪ >⎩

 ,   

,          0
,    1, 2,...,0,        0 1

1,       1

i i

i i

i i

z z
p i Dz

z z

− <⎧
⎪= =≤ ≤⎨
⎪ − >⎩

 

 

1 2 1 2,   [ , , ], [ , , ]D Dx x x z z z= = =z Mx x zK K  

The Pareto-optimal solutions correspond to
* 0.5Mx = and all the objective function values must satisfy the 

following condition: 
* 2

1

( ) 1
M

i
i

f
=

=∑ (at
* 0g = ) and we include the Pareto-optimal front data in the folder. 

 
 
D : dimension 

[ ]1 2, ,... Dλ λ λ=λ
 : the scale factor 

[ ]1 1, ,... Dp p p=p : the penalty value 

[ ]min , maxi i ix x x∈ , [ ]1 2min , min ,... minDx x x=xmin  and 

[ ]1 2max max , max ,... maxDx x x=x   
Data file: 
30D 

Name Variable 
R2_ DTLZ3_M_30D.dat M  30*30 matrix 
R2_ DTLZ3_bound_30D.dat 2*30 matrix 

1st row: xmin 
2nd row: xmax 

R2_ DTLZ3_lamda_30D.dat λ  1*30D vector 
 
 
Unconstrained Problem 13 

 WFG1_M5  

WFG [5] 

Given   1 1{ ,..., , ,..., }k k nz z z z+=z  

Minimize  1: 1 1( ) ( ,..., )m M M m m Mf Dx S h x x= −= +x  
Where  

1

1 1 1 1

{ ,..., }

  {max( , )( 0.5) 0.5,..., max( , )( 0.5) 0.5, }
M
p p p p
M M M M

x x

t A t t A t t− −

=

= − + − +

x
p
M

 

1 1
1 [{ ,..., } | | | |p p p p

Mt t −= ← ← ← ←t t tL 0,1]z  

[0,1] 1,[0,1] ,[0,1]

1 1,max ,max

{ ,..., }
      { / ,..., / }

n

n n

z z
z z z z

=

=

z
 

where M is the number of objectives, x is a set of M underlying parameters (where xM is an underlying 
distance parameter and x1:M−1 are underlying position parameters), z is a set of k + l =n ≥ M working 
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parameters (the first k and the last l working parameters are position-and distance-related parameters, 
respectively). 
D>0 is a distance scaling constant, A1: M−1 ∈{0,1} are degeneracy constants (for each Ai =0, the 
dimensionality of the Pareto optimal front is reduced by one), h1: M are shape functions, S1: M>0 are 
scaling constants, and t1: p are transition vectors, where “←|” indicates that each transition vector is 

created from another vector via transformation functions. The domain of all iz ∈ z  is [0, 2i], 
1, ...,i = n . Note that all ix ∈x  will have domain [0,1]. 

 

Constants  1: 1 2: 1  2 ,     1,     1,   1m M MS m D A A= −= = = =  
WFG1_M5 
Shape   hm=1:M−1=convexm 

                  hM   = mixedM(with α=1 and A=5) 
t1   t1

i=1:k     = yi 

 t1
i=k+1:n  = s_linear(yi,0.35) 

t2   t2
i=1:k     = yi 

 t2
i=k+1: n = b_flat ( yi, 0.8,0.75,0.85) 

t3   t3
i=1:n     = b_poly(yi,0.02) 

t4  t4
i=1:M−1 = r_sum ({y(i−1)k / (M−1) + 1,…, yik / (M−1)}, 

{2((i −1)k / (M −1) + 1),…,2ik/( M − 1)}) 
   t4

M         = r_sum ({yk+1,…, yn},{2(k+1),…,2n} 

The Pareto-optimal solutions correspond to: 1:i kz = : any combination of values in the range [0, 2i] and 

1: 2 0.35i k nz i= + = × . We include the Pareto-optimal front data in the folder. 
 

Table 1: Properties of the test functions [5] 
 
 

Test functions 

Obj
ecti
ve 

# 
P
ar
a
m
et
er
s 

 
 

Separability M
od
ali
ty 

No 
Ext
re

mal

No 
Me
dial

O
pti
m
a 
K
no
w
n 

Geometry 

Par
eto 
ma
ny-
to-
on
e 

Flat 
Re
gio
ns 

1.R2_DTLZ2_M5 f1:M √ NS M √ √ √ concave √ X 
2.R2_DTLZ3_M5 f1:M √ NS M √ √ √ concave √ X 
3.WFG1_M5 f1:M √ S U √ √ √ convex,mixed √ √ 

 
S: Separable;  NS: nonseparable;  U: Uni-modal;  M: Multi-modal;  
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III. CONSTRAINED MULTIOBJECTIVE TEST PROBLEMS

The construction of problems 1-3 and 8-10 is inspired by the method used in [6].

Constrained Problem 1

The two objectives to be minimized:

f1(x) = x1 +
2
|J1|

∑

j∈J1

(xj − x
0.5(1.0+

3(j−2)
n−2 )

1 )2

f2(x) = 1− x1 +
2
|J2|

∑

j∈J2

(xj − x
0.5(1.0+

3(j−2)
n−2 )

1 )2

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

The constraint is

f1 + f2 − a| sin[Nπ(f1 − f2 + 1)]| − 1 ≥ 0

where N is an integer and a ≥ 1
2N .

The search space is [0, 1]n.

The Pareto Front (PF) in the objective space consists of 2N + 1 points:

(i/2N, 1− i/2N), i = 0, 1, . . . , 2N.

N = 10, a = 1 and n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 11.

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

Fig. 11. Illustration of the PF of CF1.
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Constrained Problem 2

The two objectives to be minimized:

f1 = x1 +
2
|J1|

∑

j∈J1

(xj − sin(6πx1 +
jπ

n
))2

f2 = 1−√x1 +
2
|J2|

∑

j∈J2

(xj − cos(6πx1 +
jπ

n
))2

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

The search space is [0, 1]× [−1, 1]n−1.

The constraint is:
t

1 + e4|t| ≥ 0

where

t = f2 +
√

f1 − a sin[Nπ(
√

f1 − f2 + 1)]− 1.

Its PF in the objective space consists of

• an isolated Pareto optimal solution (0, 1) in the objective space, and

• N disconnected parts, the i-th part is

f2 = 1−
√

f1, (
2i− 1
2N

)2 ≤ f1 ≤ (
2i

2N
)2, i = 1, . . . , N.

N = 2, a = 1 and n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 12.

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

Fig. 12. Illustration of the PF of CF2.

April 20, 2009 DRAFT



19

Constrained Problem 3

The two objectives to be minimized:

f1 = x1 +
2
|J1| (4

∑

j∈J1

y2
j − 2

∏

j∈J1

cos(
20yjπ√

j
) + 2)

f2 = 1− x2
1 +

2
|J2| (4

∑

j∈J2

y2
j − 2

∏

j∈J2

cos(
20yjπ√

j
) + 2)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}, and

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n.

The constraint is:

f2 + f2
1 − a sin[Nπ(f2

1 − f2 + 1)]− 1 ≥ 0.

The search space is [0, 1]× [−2, 2]n−1.

Its PF in the objective space consists of

• an isolated Pareto optimal solution (0, 1) in the objective space, and

• N disconnected parts, the i-th part is

f2 = 1− f2
1 ,

√
2i− 1
2N

≤ f1 ≤
√

2i

2N
, i = 1, . . . , N.

N = 2, a = 1 and n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 13.

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

Fig. 13. Illustration of the PF of CF3.
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Constrained Problem 4

The two objectives to be minimized:

f1 = x1 +
∑

j∈J1

hj(yj)

f2 = 1− x1 +
∑

j∈J2

hj(yj)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n.

The search space is [0, 1]× [−2, 2]n−1.

h2(t) =




|t| if t < 3

2 (1−
√

2
2 )

0.125 + (t− 1)2 otherwise

and

hj(t) = t2

for j = 3, 4, . . . , n.

The constraint is:
t

1 + e4|t| ≥ 0

where

t = x2 − sin(6πx1 +
2π

n
)− 0.5x1 + 0.25.

The PF in the objective space is:

f2 =





1− f1 if 0 ≤ f1 ≤ 0.5

−0.5f1 + 3
4 if 0.5 < f1 ≤ 0.75

1− f1 + 0.125 if 0.75 < f1 ≤ 1.

n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 14.

Constrained Problem 5

The two objectives to be minimized:

f1 = x1 +
∑

j∈J1

hj(yj)

f2 = 1− x1 +
∑

j∈J2

hj(yj)

April 20, 2009 DRAFT
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0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

Fig. 14. Illustration of the PF of CF4.

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.

yj =





xj − 0.8x1 cos(6πx1 + jπ
n ) if j ∈ J1

xj − 0.8x1 sin(6πx1 + jπ
n ) if j ∈ J2,

h2(t) =




|t| if t < 3

2 (1−
√

2
2 )

0.125 + (t− 1)2 otherwise,

and

hj(t) = 2t2 − cos(4πt) + 1

for j = 3, 4, . . . , n.

The search space is [0, 1]× [−2, 2]n−1.

The constraint is:

x2 − 0.8x1 sin(6πx1 +
2π

n
)− 0.5x1 + 0.25 ≥ 0.

The PF in the objective space is:

f2 =





1− f1 if 0 ≤ f1 ≤ 0.5

−0.5f1 + 3
4 if 0.5 < f1 ≤ 0.75

1− f1 + 0.125 if 0.75 < f1 ≤ 1.

n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 15.
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Fig. 15. Illustration of the PF of CF5.

Constrained Problem 6

The two objectives to be minimized:

f1 = x1 +
∑

j∈J1

y2
j

f2 = (1− x1)2 +
∑

j∈J2

y2
j

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}, and

yj =





xj − 0.8x1 cos(6πx1 + jπ
n ) if j ∈ J1

xj − 0.8x1 sin(6πx1 + jπ
n ) if j ∈ J2

.

The search space is [0, 1]× [−2, 2]n−1.

The contraints are

x2 − 0.8x1 sin(6πx1 +
2π

n
)− sign(0.5(1− x1)− (1− x1)2)

√
|0.5(1− x1)− (1− x1)2| ≥ 0

and

x4 − 0.8x1 sin(6πx1 +
4π

n
)− sign(0.25

√
1− x1 − 0.5(1− x1))

√
|0.25

√
1− x1 − 0.5(1− x1)| ≥ 0.

The PF is:

f2 =





(1− f1)2 if 0 ≤ f1 ≤ 0.5

0.5(1− f1) if 0.5 < f1 ≤ 0.75

0.25
√

(1− f1) if 0.75 < f1 ≤ 1.

April 20, 2009 DRAFT
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n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 16.
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f2

Pareto front

Fig. 16. Illustration of the PF of CF6.

Constrained Problem 7

The two objectives to be minimized:

f1 = x1 +
∑

j∈J1

hj(yj)

f2 = (1− x1)2 +
∑

j∈J2

hj(yj)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n},

yj =





xj − cos(6πx1 + jπ
n ) if j ∈ J1

xj − sin(6πx1 + jπ
n ) if j ∈ J2

,

h2(t) = h4(t) = t2,

and

hj(t) = 2t2 − cos(4πt) + 1

for j = 3, 5, 6, . . . , n.

The search space is [0, 1]× [−2, 2]n−1.

The constraints are:

x2 − sin(6πx1 +
2π

n
)− sign(0.5(1− x1)− (1− x1)2)

√
|0.5(1− x1)− (1− x1)2| ≥ 0

April 20, 2009 DRAFT
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and

x4 − sin(6πx1 +
4π

n
)− sign(0.25

√
1− x1 − 0.5(1− x1))

√
|0.25

√
1− x1 − 0.5(1− x1)| ≥ 0.

The PF is:

f2 =





(1− f1)2 if 0 ≤ f1 ≤ 0.5

0.5(1− f1) if 0.5 < f1 ≤ 0.75

0.25
√

(1− f1) if 0.75 < f1 ≤ 1

.

n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 17.

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

Fig. 17. Illustration of the PF of CF7.

Constrained Problem 8

The three objectives to be minimized:

f1 = cos(0.5x1π) cos(0.5x2π) +
2
|J1|

∑

j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f2 = cos(0.5x1π) sin(0.5x2π) +
2
|J2|

∑

j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f3 = sin(0.5x1π) +
2
|J3|

∑

j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))2

where

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}.

The search space is [0, 1]2 × [−4, 4]n−2.

April 20, 2009 DRAFT



25

The constraint is

f2
1 + f2

2

1− f2
3

− a| sin[Nπ(
f2
1 − f2

2

1− f2
3

+ 1)]| − 1 ≥ 0.

Its PF will have 2N + 1 disconnected parts:

f1 = [ i
2N (1− f2

3 )]
1
2

f2 = [1− f2
1 − f2

3 ]
1
2

0 ≤ f3 ≤ 1

for i = 0, 1, . . . , 2N .

a = 4, N = 2, n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 18.
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f2

Fig. 18. Illustration of the PF of CF8.

Constrained Problem 9

The three objectives to be minimized:

f1 = cos(0.5x1π) cos(0.5x2π) +
2
|J1|

∑

j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f2 = cos(0.5x1π) sin(0.5x2π) +
2
|J2|

∑

j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f3 = sin(0.5x1π) +
2
|J3|

∑

j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))2

where

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},

April 20, 2009 DRAFT
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J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}.

The search space is [0, 1]2 × [−2, 2]n−2.

The constraint is

f2
1 + f2

2

1− f2
3

− a sin[Nπ(
f2
1 − f2

2

1− f2
3

+ 1)]− 1 ≥ 0.

Its PF consists of:

• a curve:

f1 = 0

0 ≤ f2 ≤ 1

f3 = (1− f2
2 )1/2

• N disconnected nonlinear 2-D surfaces, the i-th one is:

0 ≤ f3 ≤ 1

{2i− 1
2N

(1− f2
3 )} 1

2 ≤ f1 ≤ { 2i

2N
(1− f2

3 )} 1
2

f2 = [1− f2
1 − f2

2 ]
1
2 .

N = 2 and a = 3, n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 19.
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Fig. 19. Illustration of the PF of CF9.
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Constrained Problem 10

The three objectives to be minimized:

f1 = cos(0.5x1π) cos(0.5x2π) +
2
|J1|

∑

j∈J1

[4y2
j − cos(8πyj) + 1]

f2 = cos(0.5x1π) sin(0.5x2π) +
2
|J2|

∑

j∈J1

[4y2
j − cos(8πyj) + 1]

f3 = sin(0.5x1π) +
2
|J3|

∑

j∈J1

[4y2
j − cos(8πyj) + 1]

where

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3},

and

yj = xj − 2x2 sin(2πx1 +
jπ

n
)

for j = 3, . . . , n.

The search space is [0, 1]2 × [−2, 2]n−2.

The constraint is

f2
1 + f2

2

1− f2
3

− a sin[Nπ(
f2
1 − f2

2

1− f2
3

+ 1)]− 1 ≥ 0.

Its PF consists of:

• a curve:

f1 = 0

0 ≤ f2 ≤ 1

f3 = (1− f2
2 )1/2

• N disconnected nonlinear 2-D surfaces, the i-th one is:

0 ≤ f3 ≤ 1

{2i− 1
2N

(1− f2
3 )} 1

2 ≤ f1 ≤ { 2i

2N
(1− f2

3 )} 1
2

f2 = [1− f2
1 − f2

2 ]
1
2 .

N = 2 and a = 1, n = 10 in the CEC 09 algorithm contest.

Its PF is illustrated in Fig. 20.
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Fig. 20. Illustration of the PF of CF10.

IV. PERFORMANCE ASSESSMENTS

There will be two competitions in CEC 09: one is on unconstrained problems and the other is on constrained

ones. All the test problems should be treated as black-box problems, i.e., the mathematical formulations of these

problems could not be used in the algorithms.

A. Performance Metric (IGD)

Let P ∗ be a set of uniformly distributed points along the PF (in the objective space). Let A be an approximate

set to the PF, the average distance from P ∗ to A is defined as:

IGD(A, P ∗) =
∑

v∈P∗ d(v,A)
|P ∗|

where d(v,A) is the minimum Euclidean distance between v and the points in A. If |P ∗| is large enough to represent

the PF very well, IGD(A,P ∗) could measure both the diversity and convergence of A in a sense. To have a low

value of D(A,P ∗), The set A must be very close to the PF and cannot miss any part of the whole PF .

The data file and source code of computing IGD can be downloaded from:

dces.essex.ac.uk/staff/qzhang or

http://www.ntu.edu.sg/home/EPNSugan

B. Constraints

For each constraint:

gi(x) ≥ 0.

all the solutions in the approximate set for computing the IGD should satisfy:

gi(x) ≥ −10−6.
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C. The Maximal Number of Approximate Solutions

The maximal number of the solutions in the approximate set produced by each algorithm for computing the IGD

should be:

• 100 for two objective problems.

• 150 for three objective problems.

• 800 for five objective problems.

D. The maximal Number of Function Evaluations

It is set to be 300,000 for all the problems.

E. The Number of Independent Runs

Each algorithm should be run independently 30 times for each test problem.

F. Algorithmic Parameter Setting

The parameter setting should be the same for the test problems with the same number of objectives.

G. Results Format

Participants should present in their submission:

• PC Configuration:

– System

– RAM

– CPU

– Computer Language

• Algorithmic Parameter Setting:

– the list of all the parameters,

– guidelines on how to set these parameters,

– the values of these parameters used in this competition.

• Experimental Results

– the average IGD value of the 30 final approximation sets obtained for each test problem, which is the

only merit of figure for comparing different algorithms for competition purpose.

– the average CPU time used for each test problem.

– the figure showing the evolution of the means/standard deviations of IGD values of the approximate

solution sets obtained with the number of function evaluations for each test instances.

– any other statistics which you think are useful for other researchers to understand your algorithms.
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