
Benchmark Generator for the IEEE WCCI-2012

Competition on Evolutionary Computation for

Dynamic Optimization Problems

Changhe Li1, Shengxiang Yang2, David Alejandro Pelta3

October 28, 2011

1School of Computer Science, China University of Geosciences, Wuhan 430074, China
2Department of Information Systems and Computing, Brunel University, UK
3Department of Computer Science and A.I., University of Granada, Spain

changhe.lw@gmail.com, shengxiang.yang@brunel.ac.uk, dpelta@decsai.ugr.es

Many realworld optimization problems are dynamic optimization problems (DOPs), where
changes may occur over time regarding the objective function, decision variable, and constraints,
etc. DOPs raise big challenges to traditional optimization methods as well as evolutionary
algorithms (EAs). The last decade has witnessed increasing research efforts on handling dynamic
optimization problems using EAs and other metaheuristics, and a variety of methods have been
reported across a broad range of application backgrounds. In order to study the performance
of EAs in dynamic environments, one important task is to develop proper dynamic benchmark
problems.

Over the years, researchers have applied a number of dynamic test problems to compare
the performance of EAs in dynamic environments, e.g., the “moving peaks” benchmark (MPB)
proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [7], the single-
and multi-objective dynamic test problem generator by dynamically combining different objec-
tive functions of exiting stationary multi-objective benchmark problems suggested by Jin and
Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [11, 12, 13], Kang’s dynamic traveling
salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc.

Although a number of DOP generators exist in the literature, there is no unified approach
of constructing dynamic problems across the binary space, real space and combinatorial space
so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4],
which construct dynamic environments for all the three solution spaces. Especially, in the real
space, we introduce a rotation method instead of shifting the positions of peaks as in the MPB
and DF1 generators. The rotation method can overcome the problem of unequal challenge per
change for algorithms of the MPB generator, which happens when the peak positions bounce
back from the boundary of the landscape.

Based on our previous benchmark generator for the IEEE CEC’09 Competition on Dy-
namic Optimization [5], this report updates the two benchmark instances where a new change
type has been developed as well as a constraint to the benchmark instance of the dynamic
rotation peak benchmark generator. The source code in C++ language for the two bench-
mark instances is included in the library of EAlib, which is an open platform to test and
compare the performances of EAs. The EAlib package is available from the competition
website at http://people.brunel.ac.uk/~csstssy/ECDOP-Competition12.html and http:

//cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html.

1

http://people.brunel.ac.uk/~csstssy/ECDOP-Competition12.html
http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html
http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html

The definition of the two benchmark instances are described in Section 2. Section 3 gives
the description of six test problems and performance measurement is given in Section 4.

1 Framework of the GDBG system

DOPs can be defined as follows:
F = f(x, φ, t) (1)

where F is the optimization problem, f is the cost function, x is a feasible solution in the solution
set X, t is the real-world time, and φ is the system control parameter, which determines the
solution distribution in the fitness landscape.

In the GDBG system, the dynamism results from a deviation of solution distribution from
the current environment by tuning the system control parameters. It can be described as follows:

φ(t+ 1) = φ(t)⊕∆φ (2)

where ∆φ is a deviation from the current system control parameters. Then, we can get the new
environment at the next moment t+ 1 as follows:

f(x, φ, t+ 1) = f(x, φ(t)⊕∆φ, t) (3)

There are six change types of the system control parameters in the GDBG system. They
are small step change, large step change, random change, chaotic change, recurrent change, and
recurrent change with noise. In addition, a new change type: the number of peaks change, has
been developed in this report. The framework of the eight change types are described as follows:

Framework of DynamicChanges

switch(change type)

case small step:
T1 : ∆φ = α · ‖φ‖ · r · φseverity (4-1)

case large step:

T2 : ∆φ = ‖φ‖ · (α · sign(r) + (αmax − α) · r) · φseverity (4-2)

case random:
T3 : ∆φ = N(0, 1) · φseverity (4-3)

case chaotic:

T4 : φ(t+ 1) = A · (φ(t)− φmin) · (1− (φ(t)− φmin)/‖φ‖) (4-4)

case recurrent:

T5 : φ(t+ 1) = φmin + ‖φ‖(sin(
2π

P
t+ ϕ) + 1)/2 (4-5)

case recurrent with noisy:

T6 : φ(t+ 1) = φmin + ‖φ‖(sin(
2π

P
t+ ϕ) + 1)/2 +N(0, 1) · noisyseverity (4-6)

2

case number of dimensions change:

T7 : D(t+ 1) = D(t) + sign ·∆D (4-7)

case number of peaks change:

T8 : P (t+ 1) = P (t) + sign ·∆P (4-8)

where ‖φ‖ is the change range of φ, φseverity is a constant number that indicates change severity
of φ, φmin is the minimum value of φ, noisyseverity ∈ (0, 1) is noisy severity in recurrent with
noisy change. α ∈ (0, 1) and αmax ∈ (0, 1) are constant values, which are set to 0.04 and 0.1
in the GDBG system. A logistics function is used in the chaotic change type, where A is a
positive constant between (1.0, 4.0), if φ is a vector, the initial values of the items in φ should
be different within ‖φ‖ in chaotic change. P is the period of recurrent change and recurrent
change with noise, ϕ is the initial phase, r is a random number in (−1, 1), sign(x) returns 1
when x is greater than 0, returns −1 when x is less than 0, otherwise, returns 0. N(0, 1) denotes
a normally distributed one dimensional random number with mean zero and standard deviation
one. ∆D is a predefined constant, whose the default value is 1. If D(t) = Max D, sign = −1;
if D(t) = Min D, sign = 1. Max D and Min D are the maximum and minimum number of
dimensions. When the number of dimension deceases by 1, just the last dimension is removed
from the fitness landscape, the fitness landscape of the left dimensions does not change. When
the number of dimension increases by 1, a new dimension with random value is added into the
fitness landscape. Dimensional change only happens following the non-dimensional change. In
the number of peaks change, similar to the dimensional change, ∆P is also a predefined constant
of value of 2. If P (t) = Max P, sign = −1; if P (t) = Min P, sign = 1. Max P and Min P
are the maximum and minimum number of peaks. In the number of dimensions change and the
number of peaks change, the random change is used.

2 Benchmark instances

The two benchmark instances are: Dynamic rotation peak benchmark generator (DRPBG) and
Dynamic composition benchmark generator (DCBG)

2.1 Dynamic rotation peak benchmark generator

The proposed benchmark uses a similar peak-composition structure to those of MPB [1] and
DF1[7]. Given a problem f(x, φ, t), φ = (~H, ~W, ~X), where ~H, ~W and ~X denote the peak height,
width and position respectively. The function of f(x, φ, t) is defined as follows:

f(x, φ, t) =
m

max
i=1

(~Hi(t)/(1 + ~Wi(t) ·

√√√√ n∑
j=1

(xj − ~Xi
j(t))

2

n
)) (5)

where m is the number of peaks, n is the number of dimensions.
~H and ~W change as follows:

~H(t+ 1) = DynamicChanges(~H(t))
~W (t+ 1) = DynamicChanges(~W (t))

where in the height change,height severity should read φ hseverity according to Eq. (4) and
‖φ h‖ is height range. Accordingly, width severity and width range should read φ wseverity and
‖φ w‖ in the width change.

3

A rotation matrix[8] Rij(θ) is obtained by rotating the projection of −→x in the plane i− j by

an angle θ from the i-th axis to the j-th axis. The peak position ~X is changed by the following
algorithm:

Step 1. Randomly select l dimensions (l is an even number) from the n dimensions to compose
a vector r = [r1, r2, ..., rl].

Step 2. For each pair of dimension r[i] and dimension r[i + 1], construct a rotation matrix
Rr[i],r[i+1](θ(t)), θ(t)=DynamicChanges(θ(t− 1)).

Step 3. A transformation matrix A(t) is obtained by:
A(t) = Rr[1],r[2](θ(t)) ·Rr[3],r[4](θ(t)) · · ·Rr[l−1],r[l](θ(t))

Step 4. ~X(t+ 1) = ~X(t) ·A(t)

where the change severity of θ (φ θseverity) is set 1 in Eq. (4), the range of θ should read
‖φ θ‖, ‖φ θ‖ ∈ (−π, π). For the value of l, if n is an even number, l = n; otherwise l = n− 1.

NOTE: For recurrent and recurrent with noisy change, ‖φ θ‖ is within (0, π/6).

2.2 Dynamic composition benchmark generator

The dynamic composition functions are extended from the static composition functions devel-
oped by Suganthan et al. [6, 10]. The composition function can be described as:

F (x, φ, t) =
m∑
i=1

(wi · (f ′i((x− ~Oi(t) +Oiold)/λi · ~Mi) + ~Hi(t))) (6)

where the system control parameter φ = (~O, ~M, ~H), F (x) is the composition function, fi(x)
is i-th basic function used to construct the composition function. m is the number of basic
functions, ~Mi is orthogonal rotation matrix for each fi(x), ~Oi(t) is the optimum of the changed
fi(x) caused by rotating the landscape at the time t. Oiold is the optimum of the original fi(x)
without any change, the Oiold is 0 for all the basic functions used in this report. The weight
value wi for each fi(x) is calculated as:

wi = exp(−sqrt(
∑n

k=1 (xk − oki + okiold)2

2nσ2i
))

wi =

{
wi if wi = max(wi)
wi · (1−max(wi)

10) if wi 6= max(wi)

wi = wi/

m∑
i=1

wi

where σi is the converge range factor of fi(x), whose default value is 1.0, λi is the stretch factor
for each fi(x), which is defined as:

λi = σi ·
Xmax −Xmin

ximax − ximin

where [Xmax, Xmin]n is the search range of F (x) and [ximax, x
i
min]n is the search range of fi(x).

In Eq. (7), f ′i(x) = C · fi(x)/|f imax|, where C is a predefined constant, which is set to 2000,
and f imax is the estimated maximum value of fi(x), which is estimated as:

f imax = fi(xmax ·Mi)

4

In the composition DBG, ~M is initialized using the above transformation matrix construction
algorithm and then remains unchanged. The dynamism of the system control parameter ~H and
~O are changed as the parameters ~H and ~X in Dynamic rotation peak benchmark generator.

NOTE: For both DRPBG and DCBG, chaotic change of peaks locations directly operates
on the value of each dimension instead of using rotation matrix due to simulate chaotic systems
in real applications.

Five basic benchmark functions are used in the GDBG system. Table 1 shows the details of
the five functions.

Table 1: Details of the basic benchmark functions
name function range

Sphere f(x) =
∑n

i=1 x
2
i [-100,100]

Rastrigin f(x) =
∑n

i=1 (x2i − 10 cos(2πxi) + 10) [-5,5]

Weierstrass f(x) =
n∑

i=1
(
kmax∑
k=0

[ak cos(2πbk(xi + 0.5))])− n
kmax∑
k=0

[ak cos(πbk)]

a = 0.5, b = 3, kmax = 20 [-0.5,0.5]
Griewank f(x) = 1

4000

∑n
i=1(xi)

2 −
∏n

i=1cos(xi√
i
) + 1 [-100,100]

Ackley f(x) = −20 exp(−0.2

√
1
n

n∑
i=1

x2i)− exp(1
n

n∑
i=1

cos(2πxi)) + 20 + e [-32,32]

3 Problem definition and parameters settings

Overview of test functions on real space

F1: Rotation peak function

F2: Composition of Sphere’s function

F3: Composition of Rastrigin’s function

F4: Composition of Griewank’s function

F5: Composition of Ackley’s function

F6: Hybrid Composition function

For all test functions:

Dimension: n(fixed)= 5; MIN D=2, MAX D=15

The number of peaks: m=10, MIN P=10, MAX P=50

Search range: x ∈ [−5, 5]n

Total fitness evaluations: 3,000,000

Change frequency: frequency = 50, 000

The number of changes: num change = 60

Period: p = 12

Severity of recurrent with noisy: noisyseverity = 0.8

Chaotic constant: A = 3.67

5

Chaotic initialization: If φ is a vector, the initial values of the items in φ should be randomly
generated using uniform distribution within ‖φ‖ in Eq. (4)

Step severity: α = 0.04

Maximum of α: αmax = 0.1

Height range: h ∈ [10, 100]

Initial height: initial height = 50

Height severity: φ hseverity = 5.0

For all composition functions:

The number of basic function m = 10

Converge range factor: σi = 1.0, i = 1, 2, · · · , n

C = 2000

3.1 F1: Rotation peak function

In order to test an algorithm’s performance in hard-to-detect or undetectable dynamic environ-
ments, a constraint of changing ratio (change ratio) was added in F1 for all change types except
the dimensional change (T7) and the number of peaks change (T8), where only m∗change ratio
peaks are allowed to change instead of all peaks in the fitness landscape when change ratio is
less than 1.

The number of peaks: m = 10

Width range: w ∈ [1, 10]

Width severity: φ wseverity = 0.5

Initial width: initial width = 5

Changing ratio: change ratio=0.3,0.7,1.0

Figure 1: 3-D map for 2-D function of F1.

Properties

♠ Multi-modal

6

♠ Scalable

♠ Rotated

♠ The number of local optima are artificially controlled

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t), Hi(t) = maxmj Hj

3.2 F2: Composition of Sphere’s function

Basic functions: f1 − f10 =Sphere’s function

Figure 2: 3-D map for 2-D function of F2.

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ 10 local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t), Hi(t) = minmj Hj

3.3 F3:Composition of Rastrigin’s function

Basic functions: f1 − f10 =Rastrigin’s function

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ A huge number of local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t), Hi(t) = minmj Hj

7

Figure 3: 3-D map for 2-D function of F3.

Figure 4: 3-D map for 2-D function of F4.

3.4 F4:Composition of Griewank’s function

Basic functions: f1 − f10 =Griewank’s function

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ A huge number of local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t), Hi(t) = minmj Hj

3.5 F5:Composition of Ackley’s function

Basic functions: f1 − f10 =Ackley’s function

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

8

Figure 5: 3-D map for 2-D function of F5.

♠ A huge number of local optima

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t), Hi(t) = minmj Hj

3.6 F6:Hybrid Composition function

Figure 6: 3-D map for 2-D function of F6.

Basic functions: f1 − f2 =Sphere’s function
f3 − f4 =Ackley’s function f5 − f6 =Griewank’s function
f7 − f8 =Rastrigin’s function f9 − f10 =Weierstrass’s function

NOTE: For the number of peaks change in F6, the Sphere function is added if the number of
functions increases to more than 10 functions.

Properties

♠ Multi-modal

♠ Scalable

♠ Rotated

♠ A huge number of local optima

♠ Different functions properties are mixed together

♠ x ∈ [−5, 5]n, Global optimum x∗(t) = ~Oi, F (x∗(t)) = Hi(t), Hi(t) = minmj Hj

9

4 Evaluation Criteria

4.1 Description of the Evaluation Criteria

Problems: F1 − F6

Change types: T1 − T8
Dimensions: n = 5, [2− 15]
Peaks or functions: m = 10, [10− 50]
Runs/problem/change type: 20 (Do not run many 20 runs to pick the best run)
Max FES/change: 50, 000
Sampling frequency: s f = 100
Initialization: Uniformly distributed within the search space
Global Optimum: All problems have the global optimum within the given bounds and there
is no need to perform search outside of the given bounds for these problems.
Non-dimensional Change Detection: An algorithm should detect the non-dimensional
change by itself instead of informing the algorithm when a non-dimensional change occurs.
Dimensional Change Detection: An algorithms should be informed when a dimensional
change occurs.
NOTE: An environmental change should be automatically triggered once the environmental
changing criterion is satisfied rather than being called in the framework of an algorithm.
Termination: Terminate when reaching the total fitness evaluations (Max FES).
1)Record absolute function error value Elast(t) = |f(xbest(t))− f(x∗(t))| after reaching
Max FES/change for each change.
For each change type of each function, present the following values for xbest(t) over 20 runs:

Mean and STD.

mean=
∑runs

i=1

∑num change
j=1 Elast

i,j (t)/(runs ∗ num change)

STD=
√

1
runs∗num change

∑runs
i=1

∑num change
j=1 (Elast

i,j (t)−mean)2

2) Parameters
We discourage participants searching for a distinct set of parameters for each problem,dimension,

or change type. Please provide details on the following whenever applicable:
a) All parameters to be adjusted
b) Actual parameter values used.
c) Estimated cost of parameter tuning in terms of number of FEs
d) Corresponding dynamic ranges
e) Guidelines on how to adjust the parameters

3) Encoding
If the algorithm requires encoding, then the encoding scheme should be independent of the

specific problems and governed by generic factors such as the search ranges.

4) Overall performance marking measurement
In order to evaluate an algorithm’s performance in terms of both convergence speed and

solution quality, the performance of an algorithm on test case k is calculated by:

performancek = Σruns
i=1 Σnum change

j=1 rij/(num change ∗ runs) (7)

where rij = rlastij /(1+
∑S

s=1 (1− rsij)/S), rlastij is the relative value of the best one to the global op-
timum after reaching Max FES/change for each change. rsij is the relative value of the best one
to the global optimum at the s− th sampling during one change, S = Max FES/change/s f .
rsij = (f(xij) + gap)/(f(x∗ij) + gap) for the maximization problem F1 and rsij = (f(x∗ij) +

10

Table 2: Mean values and STD for the problem F1 with changing ratios change ratio =0.3,0.7,
and 1.0, respectively

Changing ratio
T1 T2 T3 T4 T5 T6 T7 T8

mean±STDmean±STDmean±STDmean±STDmean±STDmean±STDmean±STDmean±STD

0.3 — —

0.7 — —

1.0

Table 3: Mean values and STD for the problems F2-F6

Problem
T1 T2 T3 T4 T5 T6 T7 T8

mean±STDmean±STDmean±STDmean±STDmean±STDmean±STDmean±STDmean±STD

F2

F3

F4

F5

F6

gap)/(f(xij) + gap) for the minimization problems F2 − F6, here gap is used to ensure that
(f(x∗ij) + gap) is greater than 0. It was set to fabs(f(x∗ij)) + 1 in EAlib.

There are totally 60 test cases which are 3∗(F1T1−F1T6), F1T7, F1T8, F2T1−F2T8, · · · , F6T1−
F6T8, respectively. And the overall performance of an algorithm is evaluated by:

performance = Σ60
k=1performancek (8)

NOTE: For a fair competition, participants are encouraged to use the same test platform:
EAlib. This is because EAlib is able to generate the exactly same change serials for each partic-
ular run for all involved algorithms as well as the same initial population if the same population
size is used. What’s more, EAlib is also able to calculate an algorithm’s performance without
participants intervention. EAlib also provides some basic functions which can be used directly
to implement algorithms. And it also integrates some algorithms for solving the benchmark
problems.

All participants must provide the results for Table 2, Table 3, and Table 4. The winner
algorithm will be the highest score obtained in the bottom right cell in Table 4.

4.2 The six problems with the eight change types in EAlib

The six test problems (F1 − F6) can be generated from the RotationDBG class and Composi-
tionDBG classe, respectively, in EAlib. The following two functions are for generating the six
problems with the eight change types (T1 − T8):

For problem F1:
RotationDBG::initialize(rDim, rPeaks, rChangeType, rChangingRatio, rFlagDimChange,
rFlagNumPeaksChange)
Parameters:
rDim: the number of dimensions
rPeaks: the number of peaks
rChangeType: change type, from 0,· · · ,7
rChangingRatio: ratio of changing peaks
rF lagDimChange: flag of dimensional change
rF lagNumPeaksChange: flag of number of peaks change

11

Table 4: Overall performance
Problem Changing ratio T1 T2 T3 T4 T5 T6 T7 T8 Sum

F1

0.3 — —
0.7 — —
1.0

F2 1.0

F3 1.0

F4 1.0

F5 1.0

F6 1.0

The overall performance

Note: For rChangeType =0,· · · ,5 (T1,· · · ,T6), both rF lagDimChange and
rF lagNumPeaksChange are false; For rChangeType= 6(T7), rF lagDimChange is true and
rF lagNumPeaksChange is false; For rChangeType =7(T8), rF lagDimChange is false and
rF lagNumPeaksChange is true;

Take the first cell in Table 2 (F1 with T1 and change ratio=0.3) as an example. The
parameters in the function are: RotationDBG::initialize(5, 10, 0, 0.3, false,false)

For problems F2 -F6:
CompositionDBG::initialize(rDim, rPeaks, rChangeType, rFunction, rChangingRatio,
rFlagDimChange,rFlagNumPeaksChange)
Parameters:
rDim: the number of dimensions
rPeaks: the number of basic functions
rChangeType: change type, from 0,1,· · · ,7
rFunction: function ID= 0,· · · ,4 (T2, · · · , T6)
rChangingRatio: ratio of changing peaks,default value is 1.0
rF lagDimChange: flag of dimensional change
rF lagNumPeaksChange: flag of number of peaks change
Note: For rChangeType=0,· · · ,5 (T1,· · · ,T6), both rF lagDimChange and
rF lagNumPeaksChange are false; For rChangeType=6(T7), rF lagDimChange is true and
rF lagNumPeaksChange is false; For rChangeType=7(T8), rF lagDimChange is false and
rF lagNumPeaksChange is true;

Take the first cell in Table 3 (F2 with T1) as an example. The parameters in the function
are: CompositionDBG::initialize(5, 10, 0, 0, 1.0, false,false)

For details of how to run an algorithm on the six problems with the eight change types,
please see the examples and the instructions in EAlib.

4.3 Example

System: Windows XP (SP1)
CPU: Pentium(R) 4 3.00GHz
RAM: 1 G
Language: C++
Algorithm: Particle Swarm Optimizer (PSO)

12

References

[1] J. Branke, Memory enhanced evolutionary algorithms for changing optimization problems,
Proc. of the 1999 Congr. on Evol. Comput, pp. 1875-1882, 1999.

[2] Y. Jin and B. Sendhoff. Constructing dynamic optimization test problems using the multi-
objective optimization concept. EvoWorkshop 2004, LNCS 3005, pp. 526-536, 2004.

[3] C. Li, M. Yang, and L. Kang. A new approach to solving dynamic TSP, Proc of the 6th
Int. Conf. on Simulated Evolution and Learning, pp. 236-243, 2006.

[4] C. Li and S. Yang. A Generalized Approach to Construct Benchmark Problems for Dynamic
Optimization, Proc. of the 7th Int. Conf. on Simulated Evolution and Learning, LNCS 5361,
pp. 391-400, 2008.

[5] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, and P. N. Suganthan,
“Benchmark Generator for CEC2009 Competition on Dynamic Optimization,” Technical
Report 2008, Department of Computer Science, University of Leicester, U.K., 2008.

[6] J. J. Liang, P. N. Suganthan and K. Deb. Novel composition test functions for numerical
global optimization. Proc. of IEEE Int. Swarm Intelligence Symp., pp. 68-75, 2005.

[7] R. W. Morrison and K. A. De Jong. A test problem generator for non-stationary environ-
ments, Proc. of the 1999 Congr. on Evol. Comput., pp. 2047-2053, 1999.

[8] R. Salomon. Reevaluating genetic algorithm performance under coordinate rotation of
benchmark functions: A survey of some theoretical and practical aspects of genetic al-
gorithms, BioSystems, 39(3): 263-278, 1996.

[9] B. Sendhoff, M. Roberts and X. Yao. Evolutionary computation benchmarking repository,
IEEE Computational Intelligence Magazine, 1(4): 50-51, November 2006.

[10] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari. Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real-parameter
optimization. Technical Report, Nanyang Technological University, Singapore, 2005.

[11] S. Yang. Non-stationary problem optimization using the primal-dual genetic algorithm,
Proc. of the 2003 IEEE Congr. on Evol. Comput., pp. 2246-2253, 2003.

[12] S. Yang and X. Yao. Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput., 9(11): 815-834, 2005.

[13] S. Yang and X. Yao. Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. on Evol. Comput., 12(5): 542-561, October 2008.

13

	Framework of the GDBG system
	Benchmark instances
	Dynamic rotation peak benchmark generator
	Dynamic composition benchmark generator

	Problem definition and parameters settings
	F1: Rotation peak function
	F2: Composition of Sphere's function
	F3:Composition of Rastrigin's function
	F4:Composition of Griewank's function
	F5:Composition of Ackley's function
	F6:Hybrid Composition function

	Evaluation Criteria
	Description of the Evaluation Criteria
	The six problems with the eight change types in EAlib
	Example

