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Abstract

This report proposes 15 large-scale benchmark problems astansion to the existing CEC'2010
large-scale global optimization benchmark suite. The a@inoibetter represent a wider range of real-
world large-scale optimization problems and provide coismce and flexibility for comparing various
evolutionary algorithms specifically designed for largede global optimization. Introducing imbalance
between the contribution of various subcomponents, supoaents with nonuniform sizes, and con-
forming and conflicting overlapping functions are amongrttegor new features proposed in this report.

1 Introduction

Numerous metaheuristic algorithms have been successfyfiijed to many optimization problents R, 5,
9,10, 15, 16, 17, 21, 35, 39]. However, their performance deteriorates rapidly as theedsionality of the
problem increases3[ 19]. There are many real-world problems that exhibit suchdasgale propertyg,
20] and the number of such large-scale global optimization30$ problems will continue to grow as we
advance in science and technology.

Several factors make large-scale problems exceedingigudtf[45. Firstly, the search space of a
problem grows exponentially as the number of decision tte&gincreases. Secondly, the properties of the
search space may change as the number of dimensions ireréasexample, the Rosenbrock function
is a unimodal function in two dimensions, but it turns into altimodal function when the number of
dimensions increase87]. Thirdly, the evaluation of large-scale problems are Ugwexpensive. This is
often the case in many real-world problems such as gas wigbator bladeslfd], multidisciplinary design
optimization B8], and target shape design optimizati@3]|

Another factor that contributes to the difficulty of largeate problems is the interaction between vari-
ables. Two variables interact if they cannot be optimizetependently to find the global optimum of an
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objective function. Variable interaction is commonly neéxl to asnon-separability in continuous opti-
mization literature. In genetic algorithm literature tipkenomenon is commonly known ggistasis or
geneinteraction [7, 33].

In an extreme case where there is no interaction betweenaangfithe decision variables, a large-scale
problem can be solved by optimizing each of the decisioratdes independently. The other extreme is
when all of the decision variables interact with each othet all of them should be optimized together.
However, most of the real-world problems fall in betweersthiavo extreme case43]. In such problems
usually a subset of the decision variables interact witthesiber forming several clusters of interacting
variables.

The modular nature of many real-world problems makedivigle-and-conquer approach appealing for
solving large-scale optimization problems. In the contxbptimization, this divide-and-conquer ap-
proach is commonly known as decomposition meth@&l4 1, 12]. Some algorithms such as estimation
of distribution algorithms (EDASs)Z4, 29, 30, 31, 32] perform an implicit decomposition by approximat-
ing a set of joint probability distributions to representleateraction group. Some other methods such as
cooperative co-evolution (CC3f] explicitly subdivide a large-scale problem into a set obdler subprob-
lems [§4]. In recent years cooperative co-evolutionary algorithrage gained popularity in the context of
large-scale global optimizatiod,[18, 19, 26, 27, 47, 46]. Memetic algorithmsZ23] in which a local search
operator is used in an evolutionary framework are also ggipbpularity in large-scale optimizatio®d).

The IEEE CEC’2010 benchmark sui##] was designed with the aim of providing a suitable evaluatio
platform for testing and comparing large-scale globalrmation algorithms. To that end, the CEC’2010
benchmark suite is successful in representing the modatar&of many-real world problems and building
a scalable set of benchmark functions in order to promotedkearch in the field of large-scale global
optimization. However, the advances in the field of LSGO icerg years signals the need to revise and
extend the existing benchmark suite. The aim of this regotbiembark on the ideas proposed in the
CEC’2010 benchmark suite and extend the benchmark fursciioorder to better represent the features of
a wider range of real-world problems as well as posing someahallenges to the decomposition based
algorithms. The benchmarks problems described here atenmemted in MATLAB/Octave, Java and C++
which accompany this repott

2 Changes to the CEC’2010 Benchmark Suite

This report introduces the following features into the CETI0 benchmark suite.
¢ Nonuniform subcomponent sizes;
 Imbalance in the contribution of subcomponer2g]]
» Functions with overlapping subcomponents;
* New transformations to the base functiof8]{

— lll-conditioning;
— Symmetry breaking;
— Irregularities.

The need for each of the above features is discussed andateativn the following sections.

2.1 Nonuniform subcomponent sizes

Inthe CEC’2010 benchmark suite the sizes of all non-sep@asaibcomponents are equal. This only allows
for functions with uniform subcomponent sizes which arereptesentative of many real-world problems.
Itis arguable that the subcomponents of a real-world optition problem are very likely to be of unequal
sizes. In order to better represent this feature, the fonsiin this test suite contain subcomponents with a
range of different sizes.

Ihttp://goanna.cs.rmit.edu.au/ ~xiaodong/cec13-Isgo/competition/lsgo_2013_benchmark s.zip
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2.2 Imbalance in the contribution of subcomponents

In many real-world problems, it is likely that the subcompots of an objective function are different
in nature, and hence their contribution to the global objectalue may vary. In a recent studgq, it
has been shown that the computational budget can be speatdfiiciently based on the contribution of
subcomponents to the global fitness. In the CEC'2010 bendhsate for almost all of the functions
the same base function is used to represent different sytmoents. The use of the same base function
and equal sizes of subcomponents result in equal conwibafi all subcomponents. This configuration
does not represent the imbalance between the contributizerious subcomponents in many real-world
problems.

By introducing nonuniform subcomponent sizes, the coatitim of different subcomponents will be
automatically different as long as they are of differenésizHowever, the contribution of a subcomponent
can be magnified or dampened by multiplying a coefficient withvalue of each subcomponent function.

2.3 Functions with overlapping subcomponents

In the CEC’2010 benchmark suite, the subcomponents areimtigubsets of the decision variables. In
other words, the subcomponent functions do not share arigidewariable. When there is no overlap
between the subcomponents, it is theoretically possibtietmmpose a large-scale problem into an ideal
grouping of the decision variables. However, when ther@isesdegree of overlap between the subcom-
ponents, there will be no unique optimal grouping of the sieai variables. In this report, a new category
of functions is introduced with overlapping subcomponefitss serves as a challenge for decomposition
algorithms to detect the overlap and devise a suitablesglydor optimizing such partially interdependent
subcomponents.

2.4 New transformations to the base functions

Some of the base functions used in the CEC’2010 benchmaikk @té very regular and symmetric. Ex-
amples include Sphere, Elliptic, Rastrigin, and Ackleydiions. For a better resemblance with many
real-world problems, some non-linear transformationsaglied on these base functions to break the
symmetry and introduce some irregularity on the fithessdaape 13]. It should be noted that these
transformations do not change the separability and mgdaldperties of the functions. The three trans-
formations that are applied are: ill-conditioning, symmddreaking, and irregularities.

2.4.1 lll-conditioning

lll-conditioning refers to the square of the ratio betweba targest direction and smallest direction of
contour lines 13]. In the case of ellipsoid, if it is stretched in the directiof one of its axes more than
other axes then we say that the function is ill-conditioned.

2.4.2 Irregularities
Most of the benchmark functions have regular patterns.derable to introduce some degree of irregu-
larity by applying some transformation.

2.4.3 Symmetry breaking

Some operators that generate genetic variations espettiaie based on a Gaussian distribution are sym-
metric and if the functions are also symmetric there is a isidavor of symmetric operators. In order to
eliminate such bias a symmetry breaking transformatioesreble.



3 Definitions

Definition 1. Afunction f(x) is partially separable with m independent subcomponentsiff:

arg minf(x) = (argminf(xl,...),...,argminf(...,xm)),

X1 Xm
wherex = (x1,...,xp) " isadecision vector of D dimensions, x4, .. ., x,, are digoint sub-vectors of x,
and2 <m < D.
As a special case of Definitidp a function isfully separableif sub-vectorsy, . . ., x,, are 1-dimensional
(i.,e.m = D).

Definition 2. A function f(x) is fully-nonseparable if every pair of its decision variables interact with
each other.

Definition 3. A function is partially additively separablié it has the following general form:

m

F) = filxi) s
=1
where x; are mutually exclusive decision vectors of f;, x = (z1,...,2p) ' isaglobal decision vector of

D dimensions, and m is the number of independent subcomponents.

Definition 3 is a special case of Definitioh. Partially additively separable functions conveniently
represent the modular nature of many real-world proble#3k [All of the partially separable function
which are defined in this report follow the format presenteBéfinition 1.

4 Benchmark Problems

In this report we define four major categories of large-spatdlems:
1. Fully-separable functions;
2. Two types of partially separable functions:

(a) Partially separable functions with a set of non-segdaibcomponents and one fully-separable
subcomponents;

(b) Partially separable functions with only a set of nonasaple subcomponents and no fully-
separable subcomponent.

3. Functions with overlapping subcomponents: the subcompts of these functions have some degree
of overlap with its neighboring subcomponents. There acetjpes of overlapping functions:

(a) Overlapping functions with conforming subcomponeifis:this type of functions the shared
decision variables between two subcomponents have the gatineum value with respect to
both subcomponent functions. In other words, the optinozadbf one subcomponent may
improve the value of the other subcomponent due to the opditioin of the shared decision
variables.

(b) Overlapping functions with conflicting subcomponerits: this type of functions the shared
decision variables have a different optimum value with eesfpo each of the subcomponent
functions. This means that the optimization of one subcarepbmay have a detrimental effect
on the other overlapping subcomponent due to the conflictatgre of the shared decision
variables.

4. Fully-nonseparable functions.



The base functions that are used to form the separable andapamable subcomponents are: Sphere,
Elliptic, Rastrigin’s, Ackley’s, Schwefel's, and Rosepnbk’s functions. These functions which are classi-
cal examples of benchmark functions in many continuoushpétion test suitesl3, 40, 41] are mathe-
matically defined in Sectiod.1 Based on the major four categories described above anddheneen-
tioned six base functions, the following 15 large-scalecfions are proposed in this report:

1. Fully-separable Functions

(@) f1: Elliptic Function
(b) fo: Rastrigin Function
(c) f3: Ackley Function

2. Partially Additively Separable Functions

 Functions with a separable subcomponent:

(a) f4: Elliptic Function

(b) f5: Rastrigin Function

(c) fe: Ackley Function

(d) f7: Schwefels Problem 1.2

» Functions with no separable subcomponents:

(a) fs: Elliptic Function

(b) fo: Rastrigin Function

(¢) fio0: Ackley Function

(d) fi1: Schwefels Problem 1.2

3. Overlapping Functions

(a) f12: Rosenbrock’s Function
(b) fis: Schwefels Function with Conforming Overlapping Subcomgrds
(c) fi14: Schwefels Function with Conflicting Overlapping Subcomeimts

4. Non-separable Functions
(@) f15: Schwefels Problem 1.2

The high-level design of these four major categories isarpd in Sectiod.2



4.1 Base Functions
4.1.1 The Sphere Function

D
2
fsphere(x) = sz 5
i=1
wherex is a decision vector oD dimensions. The sphere function is a very simple unimodaifaty-

separable function which is used as the fully-separable@uponent for some of the partially separable
functions which are defined in this report.

4.1.2 The Elliptic Function

D

i—1
felliptic(x) = Z 106ﬁxf

i=1

4.1.3 The Rastrigin’s Function

D
frastrigin (X Z x — 10 cos(2mx;) + 10}
1=1
4.1.4 The Ackley’s Function

fackley(x) =-20 exp —0.2

1 2 1 2
2 ,
E_l xi | —exp ( E_l cos(27rxl)> +20+e

4.1.5 The Schwefel's Problem 1.2

D [
fschwefel(x) = Z Z €
i=1 \j=1
4.1.6 The Rosenbrock’s Function
D—1
froscnbrock Z 100 x — Il+1) + (Iz _ 1)2}

i=1

4.2 The Design
4.2.1 Symbols

The symbols and auxiliary functions are described in thidiee. The vectors are typeset in lowercase
bold and represent column vectors (exg= (z1,...,xp) ). Matrices are typeset in uppercase bold (e.g.
R).

S : A multiset containing the subcomponent sizes for a fumctior exampleS = {50, 25,50, 100}
means there are 4 subcomponents each with 50, 25, 50 and diBibdevariables respectively.

|S| : Number of elements i5. The number of subcomponents in a function.

C; = Z;Zl S; : The sum of the first items fromS. For conveniencé is defined to be zerd; is used
to construct the decision vector of different subcompofiemttions with the right size.

D : The dimensionality of the objective function.

P . Arandom permutation of the dimension indidgs. .., D}



w; : A randomly generated weight which is used as the coefficérith non-separable subcomponent
function to generate the imbalance effect. The weights enegted as follows:

w; = 10 3/\/(0,1)’
whereN (0, 1) is a Gaussian distribution with zero mean and unit variance.

x°Pt : The optimum decision vector for which the value of the obijecfunction is minimum. This is also
used as a shift vector to change the location of the globahojoh.

Tos, : Atransformation function to create smooth local irregities [13].

Tosy : RP = RP 2y v sign(z;) exp(&; 4+ 0.049(sin(c12;) + sin(eady))), fori=1,...,D

) -1 ifz<0

wherei; = log(|zi[) —if @i #0 csgin(z) =< 0 ifz=0
0 otherwise .

1 ifx >0
79 ifx; >0

{10 if z; >0
C1 =

55 otherwise *2ndcz = {

3.1 otherwise.

T2 : Atransformation function to break the symmetry of the syetmia functions 3.

asy

855 VE .
T8, :RP SR ;s { T if2i >0 fori—1,... D.
T; otherwise

A~ : A D-dimensional diagonal matrix with the diagonal elemenis= o* D=1 This matrix is used to
create ill-conditioning13]. The parametes is the condition number.

R : An orthogonal rotation matrix which is used to rotate thed#s landscape randomly around various
axes as suggested i84].

m : The overlap size between subcomponents.
1 =(1,...,1)" a column vector of all ones.

Except for applying some new transformations, the desigiulbf-separable and fully-nonseparable
functions does not differ from that of CEC'2010 benchmarkbe general design of other categories of
functions such as partially separable functions and oppitey functions are described in the next section.

4.2.2 Design of Partially Separable Functions
This type of functions has the following general form:

|S|—1

f(X) = Z wifnonscp(zi) + fscp(z|8\) ,

1=1
wherew; is a randomly generated weight to create the imbalancetetied f,., is either the Sphere
function or the non-rotated version of Rastrigin’s or Agkéefunctions. To generate a non-separable
version of these functions a rotation matrix may be used.vBuo#orz is formed by transforming, shifting
and finally rearranging the dimensions of vectoiA typical transformation is shown below:
y = AlOTO.Q(TOSZ(X _ Xopt))7

asy

z; = y(Pie,_,+1) * Piey))

As it was described before the vecto! is the location of the shifted optimum which is used as a shift
vector. The permutation sé is used to rearrange the order of the decision variableamlused to
construct each of the subcomponent vectgypwWith the corresponding siz&() specified in the multises.



4.2.3 Design of Overlapping Functions with Conforming Subemponents

The design of this type of functions is very similar to pdlyiageparable functions except for the formation
of vectorz; which is performed as follows:

Y(Piei i —(i—1ym+1] * Pie,—(i—1)m])

The parametern causes two adjacent subcomponents to havdecision variables in common. This
parameter is adjustable by the user and can vary in the foltprangel < m < min{S} The total
number of decision variables for this type of functions ikgkted as follows:

S|

D=3~ (S| - 1))

4.2.4 Design of Overlapping Functions with Conflicting Subomponents

The overall structure of this type of functions is similap@rtially separable functions except for the way
the vectorz; is constructed:

¥i = x(Ple, 1 —(i—1ym+1] © Ples—(i—1)m]) — X;*F

Z; = AlOTgég(Tosz (yi))-
As it can be seen, each subcomponent vegtdnas a different shift vector. This generates a conflict
between the optimum value of the shared decision varialelvgd®n two overlapping subcomponents.



4.3 The Function Definitions
4.3.1 Fully-separable Functions

f1: Shifted Elliptic Function
fi(z) = 10057122 (1)

o 7 = Tog,(x — x°PY)
* x € [~100, 100]P
* Global optimum:f; (x°Pt) = 0

Properties:
e Unimodal;
e Separable;
* Shifted;

e Smooth local irregularities;

lll-conditioned (condition numbet 10°).

f2: Shifted Rastrigin’s Function

z — 10 cos(2mz;) + 10] (2)

Mm

i=1
o 7 = AlOTig(TOSZ (x — x°P))

s x € [-5,5P
* Global optimum:f,(x°Pt) = 0

Properties:
* Multimodal;
e Separable;
* Shifted;

e Smooth local irregularities;

lll-conditioned (condition numbex 10).

f3: Shifted Ackley’s Function

1 & 1 &
f3(z) = =20 exp (—0.2 ) ; zf) — exp (5 ; cos(27rzi)> +20+e (3)

e AlOTig(TOSZ (x — x°P))

s x € [-32,32)P
* Global optimum:f3(x°Pt) = 0



Properties:
e Multimodal;
e Separable;

« Shifted;

Smooth local irregularities;

lll-conditioned (condition numbe¥ 10).

10



4.3.2 Partially Additive Separable Functions |
f4: 7-nonseparable, 1-separable Shifted and Rotated Ellipti Function

[S]=1

fa(z) = Z w; feltiptic(2:) + feliptic(2|s|) (4)

i=1

S = {50, 25,25, 100,50, 25, 25, 700}
« D=Y1%'5 = 1000

.y = x — xoPt

* Vi =Y(Pieiii41 : Pre), i € {1,...,|S[}
* zi = Tow(Riyi), 1 € {1,...,|S] - 1}

® Z5 = TOSZ(Y\SI)

R;: alS;| x |S;| rotation matrix

* x € [~100, 100]P

Global optimum;f,(x°Pt) = 0

Properties:

* Unimodal,

« Partially Separable;

* Shifted,;

e Smooth local irregularities;

« lll-conditioned (condition numbet 109).

f5: 7-nonseparable, 1-separable Shifted and Rotated Rastriig's Function

[S]=1

f5 (Z) = Z w; frastrigin (Zi) + frastrigin (z\$|) (5)

i=1
. S = {50,25,25,100, 50, 25, 25, 700}
« D=Yl5s = 1000
.y =x — xOPt
*¥i=y(Pe, 11t Prey), i€ {L,....[S[}
© 23 = ANOT2(Tosu(Riyi)), i € {1,...,[S] — 1}

*Z5 = AlOng;f(Tosz(y\sO)
* R;: a|S;| x |S;] rotation matrix
s x € [-5,5P

* Global optimum:f5(x°Pt) = 0

11



fe:

Iz

Properties:

e Multimodal;

 Partially Separable;

* Shifted;

¢ Smooth local irregularities;

* lll-conditioned (condition numbe 10).

7-nonseparable, 1-separable Shifted and Rotated Ackley’Function
IS|-1
fe(z) = Z Wi fackley (Z:) + fackley(2]s))
1=1

. S = {50,25,25,100, 50, 25, 25, 700}

« D=1 8 =1000

ey =x— x°!

*yi =Y(Pe,_,+1] : Peyy), i € {1,...,[S[}

7, = AlOTE?S'yQ(TOSZ(Riyi)), ie{l,...,|S| -1}

*Z5 = AlOTgs'}%(TOSZ(Y\SI))
* R;: a|S;| x |S;] rotation matrix
. x € [-32,32)°

¢ Global optimum:fs(x°P') = 0

Properties:

* Multimodal;

« Partially Separable;

« Shifted;

e Smooth local irregularities;

« lll-conditioned (condition numbes 10).

7-nonseparable, 1-separable Shifted Schwefel's Functio
[S|-1
f7(Z) = Z wifschwefel(zi) + fsphere(z\$|)
i=1

« 8 = {50,25,25,100, 50, 25, 25, 700}
S
« D=3Y15s = 1000

oy =x— x°P!

*¥i =¥(Peiir1) : Pre)s 1 €41, [S]}

12

(6)

(7)



* Zi = TO'Q(TOSZ(Riyi)), 1€ {1, ey |S| — 1}

asy

* Zis| = Tgs'_g(TOSZ(Y\SI))

R;: alS;| x |S;| rotation matrix

* x € [~100, 100]P

Global optimum;f3(x°Pt) = 0

Properties:

e Multimodal;

Partially Separable;
* Shifted;

Smooth local irregularities;

13



4.3.3 Partially Additive Separable Functions Il
fs: 20-nonseparable Shifted and Rotated Elliptic Function

S|

fa(z) = Z W; feniptic(2i) (8)
i—1

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}
« D=Y1%'5 = 1000

oy = x — xOP

* ¥i =Y(Pieioy4+1)  Pieny), i € 1{1,...,[S[}
o z; = Tosw(Riyi), 1 €1{1,...,|S|}

R;: alS;| x |S;| rotation matrix

* x € [~100, 100]P

Global optimum:fg(x°Pt) = 0

Properties:

* Unimodal;

Partially Separable;
* Shifted;

Smooth local irregularities;

lll-conditioned (condition number 106).

fo: 20-nonseparable Shifted and Rotated Rastrigin’s Functio

S|

f9 (Z) = Z wifrastrigin(zi) (9)
=1

S = {50, 50, 25,25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}
« D=8 8 =1000

.y =x — xOPt

*yi = Y(P[Ci,ﬁl] : 7D[Ci])’ ied{l,....ISl}
z; = NOT02 (Tos(Riyi)), i € {1,...,|S[}

R;: alS;| x |S;| rotation matrix

e x € [-5,5P

Global optimum;fy(x°Pt) = 0

14



f1o:

fii:

Properties:

20-nonseparable Shifted and Rotated Ackley’s Function

Multimodal;

Partially separable;
Shifted;

Smooth local irregularities;

lll-conditioned (condition numbex 10).

|S

flO (Z) = Z wifackley(zi)
i=1

S = {50, 50, 25, 25,100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =Yl 's = 1000

y = x — x°P!

Yi =Y(Pie,_,41) : Peyg)s i €1{1,...,|S[}
z; = NT202(Tos(Riyi)), i € {1,...,|S[}
R;: alS;| x |S;| rotation matrix

x € [-32,32]°

Global optimum:fo(x°Pt) = 0

Properties:

Multimodal;

Partially separable;
Shifted,;

Smooth local irregularities;

lll-conditioned (condition numbex 10).

20-nonseparable Shifted Schwefel's Function

S|

fll (Z) = Z wifschwefel(zi)

i=1

S = {50, 50, 25, 25,100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =315l 8 = 1000
y = x — x°P!

Yi =¥(Pe.y41) : Preg)s i € {1,..., IS}
Zi = ng}%(TOSZ(Riyi))v ie{l,...,|S[}
R;: a|S;| x |S;| rotation matrix

x € [~100,100]P

Global optimum:f;(x°Pt) =0

15
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Properties:
e Unimodal;

 Partially separable;

Shifted;

Smooth local irregularities;

16



4.3.4 Overlapping Functions

f12

fa:

: Shifted Rosenbrock’s Function

D-1

fr2(z) = z_: [100(27 = zi11)* + (21 — 1)?] (12)

=1
« D =1000
* x € [~100,100]?

+ Global optimum:f;5(x°P* + 1) = 0

Properties:

Multimodal;

Separable;

Shifted;

Smooth local irregularities;

Shifted Schwefel's Function with Conforming Overlapping Subcomponents

S|

flS(z) = Z wifschwefel(zi) (13)

i=1

S = {50, 50,25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}
*Ci=35.,Si Co=0

e D=1 8 —m(5] 1) =905

ey =x— xP!
* ¥i = Y(Pe, i —(i—1)ym+1] : Piei—(i—1ym])> € {1,...,|S[}
Zi = T0'2(Tosz(RiYi))a 1 E {1, Ceey |8|}

asy

e m = 5: overlap size

R;: a|S;| x |S;| rotation matrix

* x € [~100,100]?

Global optimum:f3(x°Pt) = 0

Properties:
* Unimodal;
* Non-separable;

* Overlapping;

Shifted;

Smooth local irregularities;

17



f14: Shifted Schwefel's Function with Conflicting Overlapping Subcomponents

S|

f14 (Z) = Z wifschwefel (zz) (14)

i=1

S = {50, 50, 25,25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}
» D=1, 5~ (m(|S] - 1)) = 905

* vi = X(Pie,_,—(i-1ym+1] : Ple,—(im1ym]) — X7

. Xipt : shift vector of sizgS;| for theith subcomponent
 2; = T2 (Tosu(Riyi))

* m = 5: overlap size

R;: alS;| x |S;| rotation matrix

* x € [~100, 100]P

Global optimum;fi4(x°Pt) = 0

Properties:
* Unimodal;

* Non-separable;

Conflicting subcomponents;

Shifted;

Smooth local irregularities;

4.3.5 Fully Non-separable Functions

f15: Shifted Schwefel's Function

D i
fis@) =Y (D =i (15)
i=1 \j=1
e D =1000
¢ zZ= Tfs'ﬁ (Tosa(x — x°P*))

* x € [~100, 100]P

Global optimum:f5(x°Pt) = 0

Properties:
* Unimodal;
 Fully non-separable;

* Shifted,;

Smooth local irregularities;
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Evaluation
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General Settings
. Problems: 15 minimization problems;
. Dimensions: D = 1000;
. Number of runs: 25 runs per function;
. Maximum number of fitness evaluations:Max_FE = 3 x 105;
. Termination criteria: when MaxFE is reached.

. Boundary Handling: All problems have the global optimum within the given boursgtsthere is no
need to perform search outside of the given bounds for thed#ems. The provided codes returns
NaN if an objective function is evaluated outside the spedifiounds.

Tablel presents the time required for 10000 function evaluatiéss) using the Matlab/Octave ver-
sions of the test suite. The test suite was tested in a sihgtad on an Intel(R) Core(TM)2 Duo CPU
E8500 @3.16GHz using GNU Octave 3.2.3 on Ubuntu Linux 1@.0%S.

Table 1: Runtime of 10,000 FEs (in seconds) on the benchmadtibns.
Function| fi fa | f3 fo | fs e I s
Runtime | 4.69| 6.35| 1.14| 4.81| 6.56| 1.37 | 3.55 | 5.34

Function | fo fio | S | fiz | fis fia fis -
Runtime | 7.90| 1.84| 9.98| 0.95| 9.94| 10.35| 24.40| -

The whole experiment witB x 10° FEs is thereby expected to take about 207 hours with the Mat-
lab/Octave version on a computer with similar configuragioft is recommended that the participants
perform parallel runs to reduce the runtime of a completesrpent.

5.2 Data To Be Recorded and Evaluation Criteria
Solution quality for each function when the FEs counter heac
e FEsl=1.2e+5
* FEs2 =6.0e+5
* FEs3 =3.0e+6

The best, median, worst, mean, and standard deviation @imens should be recorded and presented in
a table as shown in Tab Participants are requested to present their results ibuaiaform, follow-

ing the example given in Tab® Competition entries will be mainly ranked based on the medésults
achieved when FEs = 1.2e+5, 6.0e+5 and 3.0e+6. In additiease also provide convergence curves of
your algorithm on the following six selected functions: f7, fi1, fi2, f13, and f14. For each function, a
single convergence curve should be plotted using the ageesylts over all 25 runs.

Note: The function values recorded at FEs1, FEs2, FEs3 for all 85 should be recorded in a plain
text file and be submitted to the chair of the session via efnail

2The file should be submitted as a ZIP archive to Dr. Xiaodongxisiodong.li@rmit.edu.au )
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Table 2: Experimental Results.

1000D f1 f2 f3 fa f5 fs fz fs

Best XXXEHXX | XXXE+XX | XXXe+XX | X.XXe+XX | X.Xxe+XX | X.XXe+XX | X.XXe+XX | X.XXe+Xx
Median
1.2e5 | Worst
Mean
StDev
Best

Median
6.0e5 | Worst
Mean
StDev
Best

Median
3.0e6 | Worst
Mean
StDev

1000D fo fio fi1 fi2 fi3 f1a fis -

Best XXXEHXX | X XXE+XX | XXXe+XX | X.XXe+XX | X.XXe+XX | X.XXe+XX | X.XXe+XX | X.XXe+XX
Median
1.2e5 | Worst
Mean
StDev
Best

Median
6.0e5 | Worst
Mean
StDev
Best

Median
3.0e6 | Worst
Mean
StDev

6 Conclusion

In this report we have proposed a set of 15 large-scale besndtpnoblems as an extension to the existing
CEC’2010 benchmark suitd ] for better evaluation of large-scale global optimizatailgorithms and to
present some new challenges to the existing algorithmdi@rdo boost the research in the field of LSGO.

The new features that are presented in this report are: tfbdimcing imbalance between the contribu-
tion of subcomponents; (2) creating subcomponents withuraform subcomponent sizes; (3) introducing
conforming and conflicting overlapping problems, and (4)lging several nonlinear transformations to the
base functions. The primary goal in designing this new séeoichmark problems is to better represent a
wider range of real-world large-scale optimization proixe
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