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I. INTRODUCTION

Most real-world optimization problems have more than one
objective, with at least two objectives that are in conflict with
one another. The conflicting objectives of the optimization
problem lead to an optimization problem where a single
solution does not exist, as is the case with single-objective
optimisation problems (SOOPs). In stead of a single solution,
a set of optimal trade-off solutions exists, referred to as
the Pareto-optimal front (POF) or Pareto front. This kind
of optimization problems are referred to as multi-objective
optimisation problems (MOOPs).

In many real-world situations the environment does not
remain static, but is dynamic and changes over time. However,
in recent years most research was focussed on either static
MOOPs (SMOOPs) [1], [2], [3], [4], [5], [6] or dynamic
single-objective optimisation problems (DSOOPs) [7], [8], [9],
[10], [11], [12], [13]. When solving dynamic multi-objective
optimisation problems (DMOOPs) an algorithm has to track
the changing POF over time, while finding solutions as close
as possible to the true POF and maintaining a diverse set of
solutions. Some of the major challenges in the field of dynamic
multi-objective optimization (DMOO) are a lack of a standard
set of benchmark functions, a lack of standard performance
measures, issues with performance measures currently being
used for dynamic multi-objective optimisation (DMOQ) and
a lack of a comprehensive analysis of existing algorithms
applied to DMOO [14].

Recently, some of these challenges were addressed: a
comprehensive overview of existing DMOOPs were pre-
sented [15], characteristics of an ideal benchmark function
suite were proposed and DMOOPs were suggested for each of
these characteristics [15], [16]; and a comprehensive overview
of performance measures currently used for DMOO [17], [18]
was presented and issues with some of these measures when
applied to DMOO were highlighted [17], [18].

However, what is still lacking is a comprehensive analysis of
algorithms proposed for DMOO and a bechmark algorithm(s)
to compare newly proposed algorithms against. Therefore, a
unified framework should be adopted for evaluating DMOO
algorithms in order to provide a common platform for future
research in the field. In this report 12 benchmark functions
with different characteristics and from various DMOOP types
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(as defined by Farina et. al [19]) are included. Performance
measures are also suggested to compare the various DMOO
algorithms.

The rest of the report is outlined as follows: Section II
presents the mathematical formula and properties of the vari-
ous benchmark functions. The experimental setup is presented
in Section III. Section IV discusses the process that is followed
to rank the entries of this competition. The process that
participants should follow to enter the competition is discussed
in Section V.

II. BENCHMARK FUNCTIONS

This section presents the benchmarks functions for this
competition. Section II-A presents a summary of the bench-
mark function set. The mathematical formula and properties
of the benchmark functions are discussed in more detail in
Section II-B. It should be noted that the values of the bench-
mark function parameters for the competition are presented in
Section III.

A. Summary of Benchmark Functions

The benchmark set includes the following 12 DMOOPs:

o« FDA4 [19]

o FDAS [19]

o FDAS5;,, [15], [16]

o FDAS5.. [15], [16]

« DIMP2 modified from [20]

¢ dMOP2 modified from [21]

o dMOP2;,, modified from [15], [16]
e dMOP2,.. modified from [15], [16]
o dMOP3 modified from [21]

o« HE2 [22]

« HE7 [15], [16]

o HE9 [15], [16]

The benchmark functions have the following properties:

o All functions, except FDA4 and FDAS, are 2-objective
functions.

o FDA4 and FDAS are 3-objective functions.

o Type I DMOOPs: FDA4, DIMP2, dMOP3

o Type Il DMOOPs: FDAS, FDAS;s,, FDAS .., dMOP2,
dMOP2,,,, dMOP2,,.

o Type Il DMOOPs: HE2, HE7, HE9

e POF’ spread of solutions changes over time for dMOP3,
FDAS, FDAS;s, and FDAS 4.



o The POF changes from convex to concave and vice versa
for dAMOP2, dMOP2;,,, dAMOP2,.., HE7 and HE9

o The POS of HE7 and HE9 is complex, i.e. a non-linear
function

e The POF of HE2 is discontinuous

e The POF of dMOP3 and DIMP2 is convex

o Each decision variable of DIMP2 has its own rate of
change

B. Definitions and Properties of Benchmark Functions

This section presents the mathematical formula and proper-
ties of the benchmark functions.

FDA4

Minimize : £f(x,t) = (f1(x, g(xy,1)),.
f1(x,9,t) = (1+ g(xn, 8)) [T " cos (4
Fr(x.9.1) = (1 + g, 1)) (TT 7% cos (%
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(b) POF of FDAS for four time steps[19]
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Properties of FDA4

FDAS =

Setk=2and M =3

3-objective function

Type I DMOOP

Non-convex POF - spherical surface

POF is f + f2 + f2 =1 (refer to Figure 1(a))
Pareto-optimal set (POS) is z; = G(t), Vz; € x11

FDAS
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Properties of FDAS

Set M =3

3-objective function

Type I DMOOP

Non-convex POF

Spread of solutions in the POF changes over time

POF is f2+ 3+ f2 = (1 + G(t))? (refer to Figure 1(b))
POS is z; = G(t), Vz; € x

Fig. 1.

POF of FDA4 and FDAS for three objective functions. The size of

the sphere’s radius of FDAS5’s POF changes in a cyclic manner as the value
of G changes over time. The radius increases over time and then decreasing

to the

value of 1.0

FDAS;,,
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Properties of FDAS;,

Set A = G(t),
Set M =3
Type II DMOOP

Isolated, non-convex POF

Spread of solutions in the POF changes over time

POF is f2+ f2+ f2 = (1 + G(t))? (refer to Figure 1(b))
POS is Y = G(t), Vx; € X11

B =0.001 and C = 0.05



FDAS ..

Minimize : £(x,t) = (f1(x, g(x11,1)), ...,
fre(x, 9(x11, 1))
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Properties of FDAS5 ..

e Set A= G(t), B=10.001 and C = 0.05

e Set M =3

« Type Il DMOOP

« Deceptive, non-convex POF

e POFis f2+ f2+ f2 = (1+ G(t))? (refer to Figure 1(b))
e POS is Y = G(t), Va; € X11

DIMP2

Minimize : f(x,t) = (f1(x1), g(xn,t) - h(f1(x1),

g(xi,1)))

fi(x) = =1

glxit) =14+2(n—1)+ 3, o (@i —Gi(t)*~
DIMP2 — 2 cos(3m(z; — Gi(t)))]

h(fi,9) =1~ %

where : ,
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X| € [0,1]; X € [—2,2]"71
%)

Properties of DIMP2

e Type I DMOOP

o Convex POF

o Each decision variable has its own rate of change
e POF is 1 — +/f; (refer to Figure 2)

e POS is z; = G(t), Va; € xy

Fig. 2. POF of DIMP2 with n¢ = 10 and 7 = 10 for 1000 iterations [19].

dMOP2
Minimize : f(x,t) = (f1(x1), 9(x11, t) - h(f1(x1),
g(xllvt 7t))
fi(xr) = =1
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x; €[0,1]; x1 = (x1)
xi1 = (22,...,%n)

(©6)

Properties of dAMOP2

e Type II DMOOP

o POF changes from convex to concave, and vice versa
« POFis 1 — f7) (refer to Figure 3)

e POS is z; = G(t), Vx; € X

Fig. 3. POF of dMOP2 with ny = 10 and 7+ = 10 for 1000 iterations. POF
changes in a cyclic manner over time, by moving either from the middle line
to the top line for certain time steps or from the bottom line to the middle
line for the other time steps.



Minimize : f(x,t) = (fi1(x1), g(x11,t) - h
g(x11,1),t))
fi(xr) =21

H(t)
_ f1

wfrg0 =1~ (&)
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Properties of dMOP2;,,

e Set A= G(t), B=10.001 and C = 0.05
e Type II DMOOP
¢ Isolated POF

o POF changes from convex to concave, and vice versa

« POFis 1 — £V (refer to Figure 3)
e POS is y; = G(t), Vx; € Xy

dMOP2,.,
Minimize : f(x,t) = (f1(x1), 9(X11,%) - I
g(x11,1),1))
fi(xr) =x1
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Properties of dAMOP2,..

e Set A= G(t), B=10.001 and C = 0.05
« Type I DMOOP
o Deceptive POF

« POF changes from convex to concave, and vice versa

e POFis 1 — lH(t) (refer to Figure 3)
e POS is Y = G(t), V.l?l € X))

dMOP3
Minimize : f(x,t) = (f1(x1), g(xy,t) - h
g(xu, 1))
Sixi) = @
g(xit) = 14+930, o\ (i — G(1))?
dMOP3 =

h(fi,9) =1— \/?

where :
G(t) = sin(0.57t),

z; €[0,1; »=U(1,2,...,n)

(7
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Properties of dMOP3

o Type I DMOOP

o Convex POF

o Spread of the POF solutions changes over time

e POF is 1 — /f; (refer to Figure 2) POS is z; =
G(f), Vz; € X

HE2

HE2 =

Minimize : f(x,t) =
g(xn), 1))

fi(x) =z

glxn) =1+ 25 3, oy, @i

B9 =1- (4 /%)H(t) - (%)H(t) sin(107 f1)
where :
=%z

H(t) = 0.75sin(0.57t) + 1.25,
€[0,1; x = (z1); x5 = (z2,...,Tn)

(f1(x1), gGen) - h(f1(x1),

(10)

Properties of HE2

o Type III DMOOP
o Discontinuous POF, with various disconnected continu-
ous sub-regions

. POFis 1 — (yv71)"" -

HO gin(0.5mf1)

e POSis z; =0, Vx; € x)

HE7

HE7 =

gh

Fig. 4. POF of HE7 with ny = 10 and 7 =
POF changes in a cyclic manner, moving from the middle to the top, then
from the top to the middle, then from the middle to the bottom and then from
the bottom to the middle. This whole process is then repeated.

Minimize : f(x,t) =

9(x,1))
fi(x) ==z + m Yien (@ - [0.327 cos (24may + 2T

+ 0.6x1] cos(67rx1 + %))2
g(x)72—\/7+ T72] zgng (ac7

(fl(x)vg(xft) : h(fl(x))

0. 3z% cos(247r1’1+

43") +0. 6x1]sm(67'ra:1 + ]”))2
H(t)
h(f1,9)=1- (&)

where :
H(t) = 0.75sin(0.5nt) + 1.25, =L FJ
Ji={j| jisodd and 2 < j <n}
Jo ={j| jisevenand 2 < j<n}
xr1 € [0, 1},

Tt

z; € [-1,1], Vi=2,3,...,n

an

0 0.2 0.4 0.6 0.8 1
f1

10 for 1000 iterations [16].



Properties of HE7
o Type III DMOOP

o POF changes from convex to concave, and vice versa
o POS (refer to Figure 5) and POF (refer to Figure 4) are:

6mzy+ 1T .
acos (%) , JE€ N

POS :z; = asin<67rzl+]%), Jj € J2
with:
a= [0.3‘%% cos(24nzy + 437”) + 0.63:1]
o1 H(t)
POF :y=(2— 1) |1 - [ —2—
v=@ve (2 - m)

(a) POS of 5 with ny = 10 and 74 = 10 for
1000 iterations

o

(b) POS of x5 with nt = 10 and 7+ = 10
for 1000 iterations

Fig. 5. POS of HE7 for two decision variables, x2 and x5 [16]

HE9
Minimize : £06,1) = (16, 9% £) - (71 (),
9(x,1)))
fi(x) =z1 + \T21| ZjGJl <:cj — sin (67rx1 + %))2
g(x) =2 —af + |J272‘ 2 jeds (xj — sin (67”31 + %))
HE9 =

H(t)
_1_(fL
h(fi,9)=1 ( g )
where :
H(t) = 0.75sin(0.57t) + 1.25, t = n% {lJ
J1={j] jisoddand 2 <j<n}
Jo ={j| jisevenand 2 < j<n}
CCZE[Ovl] Vi:1727'“7n

12)

Properties of HE9
o Type Il DMOOP

o POF changes from convex to concave, and vice versa
o POS (refer to Figure 6) and POF (refer to Figure 4) are:

POS : xj = sin (67rx1-l—ﬂ)7 Vj=2,3,...,n.
n

()

POF :y=(2- 1)
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(a) POS of 5 with ny = 10 and 74 = 10 for
1000 iterations

08
2 06
04
02
o
0 0z 04 [ 08

(b) POS of x5 with nt = 10 and 7+ = 10
for 1000 iterations

1

1

Fig. 6. POS of HE9 for two decision variables, 2 and x5

III. EXPERIMENTAL SETUP

This section discusses the experimental setup that should be
used for the competition.

A. Algorithm Settings
The values of parameters that should be used for the

algorithm are presented in Table I.

TABLE 1
#solutions AND #entities VALUES FOR THE ALGORITHM

#solutions | #entities
200 100

These values should be implemented in the algorithm as
follows: At any iteration throughout the run an algorithm is
not allowed to have more than 100 entities (individuals or par-
ticles). The maximum number of solutions in the approximated
POF or archive is 200.

B. Benchmark Function Settings

This section presents the values of parameters that should
be used for the benchmark functions.

1) Values for n; and t,: Table Il presents the 6 com-
binations of n; and 7y, and number of iterations (7r) that
should be used for each of the benchmark functions listed
in Section II-A. In Table II, n;, 7, and 71 are the severity
of change, frequency of change and maximum number of
iterations respectively.

Therefore, for each n;-7; combinations, there will be 20
environment changes.



2) Values for n and M : The values for n and M that should
be used for the benchmark functions are indicated in Table III.
In Table III, n and M are the number of decision variables
and number of objective functions respectively.

Table IV presents the values that should be used for A, B
and C for FDAS,,,, FDAS54.., dMOP2;,, and dMOP24... In
Table 1V, A, B and C refer to the values of the mapping
function, i.e. every decision variable between the values of B
and C' is mapped to the value A.

IV. EVALUATION OF DMOO ALGORITHMS

This section discusses the process that will be followed
to evaluate the performance of the algorithms. Section IV-A
discusses the performance measure that will be used. The
ranking of the algorithms is discussed in Section IV-B.

A. Performance Measure

Many of the existing performance measures’ accuracy are
affected when algorithms lose track of the changing POF
or when outliers occur in the found POF. Based on the
analysis done on existing performance measures by Helbig
and Engelbrecht [17], [18], the following performance measure
will be used to evaluate algorithms for this competition [23]:

accqs(t) = |[HV(POF'(t)) — HV(POF*(t))|

where HV is the hypervolume [24], [25].

13)

TABLE 1T
n¢, T¢ AND 77 VALUES FOR THE BENCHMARK FUNCTIONS

ne | Tt T
10 | 5 100
10 | 10 | 200
10 | 25 | 500
10 | 50 | 1000
1 10 | 200
1 50 | 1000
20 | 10 | 200
20 | 50 | 1000

TABLE III

n AND M VALUES FOR THE BENCHMARK FUNCTIONS

DMOOP n M

FDA4 23
FDA5 23
FDA5;.0 23
FDA5 . 23
DIMP2 10
dMOP2 10

dMOP2;,, | 10
dMOP2,,, | 10

dMOP3 10
HE2 30
HE7 10
HE10 10

TABLE IV

A, B AND C VALUES FOR THE BENCHMARK FUNCTIONS FDAS5;,,,
FDAS 4¢., DMOP2;5, AND DMOP2,..

A B c
G(t) | 0.001 | 0.05

B. Ranking of the Algorithms

The reference vector for the calculation of the HV will
be calculated as the worst objective function values obtained
from the set of all submitted data to the competition. For
each time step just before a change in the environment
occurs, the accy; value is calculated. After 30 runs, for each
time step just before a change occurs, the average accg:
value for the 30 runs is calculated. The calculation of wins
and losses that is performed based on these accyy; averaged
values is presented in Algorithm 1 [26]. In Algorithm 1,
Diff = #wins — #losses, where Dif f is the difference
between the number of wins and number of losses assigned to
the dynamic multi-objective optimisation algorithm (DMOA)
and pm refers to performance measures values.These average
values are then used to calculate the wins-and-losses for each
algorithm as follows:

Algorithm 1 Calculation of wins and losses

for each DMOOP do
for each n;-7; combination do
perform Kruskal-Wallis tests on pm
if statistical significant difference then
for each DMOA-pair do
perform Mann-Whitney U test on pm
if statistical significant difference then
assign wins and losses
end if
end for
end if
end for
calculate Dif f for the n.-7 combination
end for
calculate Dif f for the DMOOP

This approach takes into account the tracking ability of a
DMOA. If the Mann-Whitney U test indicates that there is a
significant difference, the average performance measure value
of each time step just before a change in the environment
occurred are used to award wins and losses. At each time
step just before a change in the environment occurred, the
average performance measure values of the two DMOAs are
compared. The DMOA with the best performance measure
value is awarded a win and the other DMOA is awarded a
loss. In order to ensure that a DMOA that tracks the changing
POF very well for a DMOOP does not lead to skewed results,
the number of wins and losses are normalised as follows:

Hinsngn, = LIS
#changes
l
#lossesnorm = _tlosses (14)
#changes

where #changes represents the number of changes that oc-
curred during the entire run. In situations where the time steps
at which a change in the environment occurs are unknown, the
algorithm should log detected changes during the run.

The total number of wins and losses for each algorithm is
calculated and the algorithms are then ranked based on their
Dif f value.



V. PROCESS TO ENTER COMPETITION

Participants should follow the following process to enter the
competition:

o Please let us know if you intend to take part in the

competition so that we can add you to our mailing list.

o Run your algorithm on the benchmark functions outlined
in Section II, setting the parameter values of the functions
and algorithm according to Section III.

¢ For each function, and for each iteration, record the found
POF and POS.

o Send your POF and POS data files via email to: mgre-
eff@gmail.com or upload the files via Google docs and
share the documents with the organizers. If you do not
receive a confirmation email about your entry, contact
one of the competition organizers.

It should be noted that by entering the competition you
agree that your data can be shared with fellow researchers
in the field. Therefore, this competition will provide DMOO
researchers with experimental data to compare their algorithms
against in future.

Furthermore, participants of the competition may also sub-
mit a paper to the associated special session, using their data
submitted for this competition. However, the paper should
include all information required to be reviewed independently
for the special session.

The competition website is available at:
https://sites.google.com/site/cec2015dmoocomp.
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