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Many real-world optimization problems require computationally expensive simulations for evaluating 
their candidate solutions. For practical reasons such as computing resource constraints and project 
time requirements, optimization algorithms specialized for computationally expensive problems are 
essential for the success in industrial design. Often, canonical evolutionary algorithms (EA) cannot 
directly solve them since a large number of function evaluations are required which is unaffordable in 
these cases. In recent years, various kinds of novel methods for computationally expensive 
optimization problems have been proposed and good results with only limited function evaluations 
have been published. 
 
To promote research on expensive optimization, we successfully organized a competition focusing on 
small- to medium-scale real parameter bound constrained single-objective computationally expensive 
optimization problems at CEC 2014 [2]. For 8 functions with 10/20/30 decision variables, results 
were collected and compared. The discussions during the special session of CEC2014 on 
computationally expensive optimization encouraged us to organize this competition and special 
session.  This year, we choose 15 new benchmark problems and propose a more challenging 
competition within CEC 2015. The benchmark includes more composite problems and hybrid 
problems [1].  
 
We request participants to test their algorithms on the 15 black-box benchmark functions with 10 and 
30 dimensions. The participants are required to send the final results (corresponding to their finally 
accepted paper) in the format given in this technical report to the organizers (~ March 2015). The 
organizers will conduct an overall analysis and comparison.  The participants with the best results 
should also be willing to release their codes for verification before declaring the eventual winners of 
the competition. 
 
The JAVA, C and Matlab codes for CEC’15 test suite can be downloaded from the website given 
below: http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015  
 

1. Introduction of the CEC’15 expensive optimization test problems 

1.1 Common definitions 
 

All test functions are minimization problems defined as follows: 
min f(x), T

1 2[ , ,..., ]Dx x xx
 



where D is the dimension of the problem,  T
1 1 2[ , ,..., ]i i i iDo o oo  is the shifted global optimum (defined 

in “shift_data_x.txt”), which is randomly distributed in [-80,80]D. Each function has a shift data for 
CEC’15.  All test functions are shifted to o and scalable. For convenience, the same search ranges are 
defined for all test functions as [-100,100]D. 
 
In real-world problems, it is seldom that there rarely exist linkages among all variables. The decision 
variables are divided into subcomponents randomly. The rotation matrix for each sub-component is 
generated from standard normally distributed entries by Gram-Schmidt ortho-normalization with 
condition number c that is equal to 1 or 2. 
 
1.2 Summary of CEC’15 expensive optimization test problems 
 

Table I. Summary of the CEC’ 15 expensive optimization test problems 
Categories No Functions Related basic functions *

iF  

Unimodal 
functions 

1 Rotated Bent Cigar Function Bent Cigar Function 100 
2 Rotated Discus Function Discus Function 200 

Simple 
Multimodal 
functions 

3 Shifted and Rotated Weierstrass Function Weierstrass Function 300
4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 400 
5 Shifted and Rotated Katsuura Function Katsuura Function 500 
6 Shifted and Rotated HappyCat Function HappyCat Function 600 
7 Shifted and Rotated HGBat Function HGBat Function 700 
8 Shifted and Rotated Expanded Griewank’s 

plus Rosenbrock’s Function 
Griewank’s Function 
Rosenbrock’s Function 

800 

9 Shifted and Rotated Expanded Scaffer’s F6 
Function 

Expanded Scaffer’s F6 Function 900 

Hybrid 
funtions 

10 Hybrid Function 1 (N=3) Schwefel's Function 
Rastrigin’s Function 
High Conditioned Elliptic Function 

1000 

11 Hybrid Function 2 (N=4) Griewank’s Function 
Weierstrass Function 
Rosenbrock’s Function 
Scaffer’s F6 Function

1100 

12 Hybrid Function 3 (N=5) Katsuura Function 
HappyCat Function 
Griewank’s Function 
Rosenbrock’s Function 
Schwefel’s Function 
Ackley’s Function 

1200 

Composition 
functions 

13 Composition Function 1 (N=5) Rosenbrock’s Function 
High Conditioned Elliptic Function 
Bent Cigar Function 
Discus Function 
High Conditioned Elliptic Function 

1300 

14 Composition Function 2 (N=3) Schwefel's Function 
Rastrigin’s Function 
High Conditioned Elliptic Function 

1400 

15 Composition Function 3 (N=5) HGBat Function 
Rastrigin’s Function 
Schwefel's Function 
Weierstrass Function 
High Conditioned Elliptic Function 

1500 

Please note: These problems should be treated as black-box optimization problems and without any 
prior knowledge. Neither the analytical equations nor the problem landscape characteristics extracted 
from analytical equations are allowed to be used. However, the dimensionality and the number of 
available function evaluations can be considered as known values and can be used to tune algorithms.  
 
1.2 Definitions of basic functions 
 
1) Bent Cigar Function 
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2) Discus Function 
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3) Weierstrass Function 

 
max max

3
1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]
D k k

k k k k
i

i k k

f a b x D a b 
  

     x   (3) 

where a=0.5, b=3, and kmax=20. 
 

4) Modified Schwefel’s Function 
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5) Katsuura Function 
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6) HappyCat Function 
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7) HGBat Function 

 
1/ 2

2 2 2 2
7

1 1 1 1

( ) ( ) ( ) (0.5 ) / 0.5
D D D D

i i i i
i i i i

f x x x x D
   

       x   (7) 

 
 

8) Expanded Griewank’s plus Rosenbrock’s Function  
 8 11 10 1 2 11 10 2 3 11 10 1 11 10 1( ) ( ( , )) ( ( , )) ... ( ( , )) ( ( , ))D D Df f f x x f f x x f f x x f f x x    x   (8) 
 

9) Expanded Scaffer’s F6 Function 
Scaffer’s F6 Function:  
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10) Rosenbrock’s Function 
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11) Griewank’s Function 
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12) Rastrigin’s Function 
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13) High Conditioned Elliptic Function 
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14) Ackley’s Function  
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2. Definitions of the CEC’15 Expensive Test Suite 
 
2.1 Unimodal Functions 
 
1) Rotated Bent Cigar Function 
 
 1 1 1 1( ) ( ( )) *F f F  Mx x o   (15) 
 

 
Figure 1. 3-D map for 2-D function 

 

Properties: 
 Unimodal  
 Non-separable 
 Smooth but narrow ridge  

 
2) Rotated Discus Function 
 2 2 2 2( ) ( ( )) *F f F  Mx x o   (16) 



 
Figure 2. 3-D map for 2-D function  

Properties: 
 Unimodal  
 Non-separable 
 With one sensitive direction 

 
2.2 Simple Multimodal Functions 
 
3) Shifted and Rotated Weierstrass Function 
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Figure 3. 3-D map for 2-D function 

Properties: 
 Multi-modal  
 Non-separable 
 Continuous but differentiable only on a set of points 

 
4) Shifted and Rotated Schwefel’s Function 
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Figure 4(a). 3-D map for 2-D function 

 
Figure 4(b).Contour map for 2-D function 

Properties: 
 Multi-modal  
 Non-separable 
 Local optima’s number is huge and second better local optimum is far from the global 

optimum. 
 
 
5) Shifted and Rotated Katsuura Function 
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Figure 5(a). 3-D map for 2-D function 



 
Figure 5(b).Contour map for 2-D function 

Properties: 
 Multi-modal  
 Non-separable 
 Continuous everywhere yet differentiable nowhere 

 
 
6) Shifted and Rotated HappyCat Function 
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Figure 6(a). 3-D map for 2-D function 

 
Figure 6(b).Contour map for 2-D function 



Properties: 
 Multi-modal  
 Non-separable 

 
 
7) Shifted and Rotated HGBat Function 
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Figure 7(a). 3-D map for 2-D function 

 
Figure 7(b).Contour map for 2-D function 

 
Properties: 

 Multi-modal  
 Non-separable 

 
 
8) Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function 
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Figure 8(a). 3-D map for 2-D function 

 
Figure 8(b).Contour map for 2-D function 

Properties: 
 Multi-modal  
 Non-separable 

 
 
9) Shifted and Rotated Expanded Scaffer’s F6 Function 
 
 9 9 9 9( ) ( ( ) 1) *F f F   Mx x o   (23) 

 

 
Figure 9. 3-D map for 2-D function 

 

Properties: 



 Multi-modal  
 Non-separable 

 
 
2.3 Hybrid Functions  
 
In real-world optimization problems, different subsets of the variables may have different 
properties. In this set of hybrid functions, the variables are randomly divided into some 
subsets and then different basic functions are used for different subsets.  
 
 *
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F(x): hybrid function 
gi(x): ith basic function used to construct the hybrid function 
N:       number of basic functions  
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ip :  used to control the percentage of gi(x) 

ni:  dimension for each basic function 
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10) Hybrid Function 1 (N=3) 
 
p = [0.3, 0.3, 0.4] 
g1:  Modified Schwefel's Function f4 
g2:  Rastrigin’s Function f12 
g3:  High Conditioned Elliptic Function f13 
 
 
11) Hybrid Function 2 (N=4) 
 
p = [0.2, 0.2, 0.3, 0.3] 
g1:  Griewank’s Function f11 
g2:  Weierstrass Function f3 
g3:  Rosenbrock’s Function f10 
g4:  Scaffer’s F6 Function f9 
 
 
12) Hybrid Function 3 (N=5) 
 
p = [0.1, 0.2, 0.2, 0.2, 0.3] 
g1:  Katsuura Function f5 
g2:  HappyCat Function f6 
g3:  Expanded Griewank’s plus Rosenbrock’s Function f8 
g4:  Modified Schwefel’s Function f4 



g5:  Ackley’s Function f14 
 
 
2.4 Composite Functions 
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F(x): composition function 
gi(x):  ith basic function used to construct the composition function 
N:  number of basic functions  
oi: new shifted optimum position for each gi(x), define the global and local optima’s 

position 
biasi: defines which optimum is global optimum  

i :  used to control each gi(x)’s coverage range, a small i  give a narrow range for that 
gi(x) 

i :    used to control each gi(x)’s height 

iw :  weight value for each gi(x), calculated as below: 
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Then normalize the weight 
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The optimum which has the smallest bias value is the global optimum. The composition 
function merges the properties of the sub-functions better and maintains continuity around the 
global/local optima.  
 
13) Composition Function 1 (N=5) 
 
 
N= 5， = [10, 20, 30, 40, 50] 
 = [1, 1e-6, 1e-26, 1e-6, 1e-6] 
bias = [0, 100, 200, 300, 400] 
g1:  Rotated Rosenbrock’s Function f10 
g2:  High Conditioned Elliptic Function f13 
g3:  Rotated Bent Cigar Function f1 
g4:  Rotated Discus Function f2 
g5:  High Conditioned Elliptic Function f13 



 
Figure 10(a). 3-D map for 2-D function 

 
Figure 10 (b).Contour map for 2-D function 

Properties: 
 Multi-modal  
 Non-separable 
 Asymmetrical  
 Different properties around different local optima 

 
 
 
14) Composition Function 2 (N=3) 
 
 
N = 3 
 = [10, 30, 50] 
 = [0.25, 1, 1e-7] 
bias = [0, 100, 200] 
g1:  Rotated Schwefel's Function f4 
g2:  Rotated Rastrigin’s Function f12 
g3:  Rotated High Conditioned Elliptic Function f13 



 
Figure 11(a). 3-D map for 2-D function 

 
Figure 11(b).Contour map for 2-D function 

 
Properties: 

 Multi-modal  
 Non-separable 
 Asymmetrical  
 Different properties around different local optima 

 
 
 
 
15) Composition Function 3 (N=5) 
 
N = 5 
 = [10, 10, 10, 20, 20] 
 = [10, 10, 2.5, 25, 1e-6] 
bias = [0, 100, 200, 300, 400] 
g1:  Rotated HGBat Function f7 
g2:  Rotated Rastrigin’s Function f12 
g3:  Rotated Schwefel's Function f4 
g4:  Rotated Weierstrass Function f3 
g5:  Rotated High Conditioned Elliptic Function f13 



 
Figure 12(a). 3-D map for 2-D function 

   
Figure 12(b).Contour map for 2-D function 

Properties: 
 Multi-modal  
 Non-separable 
 Asymmetrical  
 Different properties around different local optima 

 
 
 
3. Evaluation criteria 
 
3.1 Experimental setting: 
 

 Number of independent runs: 20 
 Maximum number of exact function evaluations:  

o 10-dimensional problems: 500 
o 30-dimensional problems: 1,500 

 Initialization: Any problem-independent initialization method is allowed. 
 Global optimum: All problems have the global optimum within the given bounds and there is 

no need to perform search outside of the given bounds for these problems, as solutions out of 
the given bounds are regarded as invalid solutions. 

 Termination: Terminate when reaching the maximum number of exact function evaluations or 
the error value ( * *( )i i xF F ) is smaller than 310 . 

 
3.2 Results to record:  
 



(1) Current best function values: 
 
Record current best function values using 0.01MaxFES , 0.02MaxFES ,…, 0.09MaxFES , 0.1MaxFES , 
0.2MaxFES , …, MaxFES  for each run. Sort the obtained best function values after the maximum 
number of exact function evaluations from the smallest (best) to the largest (worst) and present the 
best, worst, mean, median and standard deviation values for the 20 runs. Error values smaller than 810  
are taken as zero.  
 
(2) Algorithm complexity: 
 
For expensive optimization, the criterion to judge the efficiency is the obtained best result vs. number 
of exact function evaluations. But, the computational overhead on surrogate modeling and search is 
also considered as a secondary evaluation criterion. Considering that for different data sets, the 
computational overhead for a surrogate modeling method can be quite different, the computational 
overhead of each problem is necessary to be reported. Often, compared to the computational cost on 
surrogate modeling, the cost on 500 and 1500 function evaluations can almost be ignored. Hence, the 
following method is used:  
 
a)  Run the test program below: 

for i=1:1000000 

x= 0.55 + (double) i; 

x=x + x; x=x/2; x=x*x; x=sqrt(x); x=log(x); x=exp(x); x=x/(x+2); 

end 

Computing time for the above=T0; 

 

b) The average complete computing time for the algorithm = 1T


 

 
The complexity of the algorithm is measured by: 1/ 0T T


.  

 
(3) Parameters: 
 
Participants are requested not to search for the best distinct set of parameters for each 
problem/dimension/etc. Please provide details on the following whenever applicable: 
 
a) All parameters to be adjusted 
b) Corresponding dynamic ranges 
c) Guidelines on how to adjust the parameters 
d) Estimated cost of parameter tuning in terms of number of FEs 
e) Actual parameter values used. 
 
 
(4) Encoding  
 
If the algorithm requires encoding, then the encoding scheme should be independent of the specific 
problems and governed by generic factors such as the search ranges, dimensionality of the problems, 
etc. 
 
(5) Results format 
 



The participants are required to send the final results as the following format to the organizers (after 
submitting the final accepted paper version) and the organizers will present an overall analysis and 
comparison based on these results: Create one txt document with the name 
“AlgorithmName_FunctionNo._D_expensive.txt” for each test function and for each dimension. For 
example, PSO results for test function 5 and D=30, the file name should be 
“PSO_5_30_expensive.txt”. 
 
The txt document should contain the mean and median values of current best function values when
0.1MaxFES , 0.2MaxFES , …, MaxFES are used of all the 20 runs. The participant can save the results in 
the matrix shown in Table II and extracts the mean and median values.  
 

Table II Information matrix for function X 
 0.01MaxFES  0.02MaxFES … MaxFES  
Run 1     
Run 2     
…     
Run 20     
 
Note:  All participants are allowed to improve their algorithms further after submitting the initial 
version of their papers to CEC2015 for review. They are required to submit their results in the 
required format to the organizers after submitting the final version of your accepted paper as soon as 
possible. Considering the surrogate modeling for 30 dimensional functions is often time consuming, 
especially for MATLAB users, results using 10 runs are sufficient for the first submission.  
 
3.3 Results template 
 
Language: Matlab 2008a 

Algorithm: Surrogate model assisted evolutionary algorithm A 

Results 

(Note: Considering the length limit of the paper, only Error Values Achieved with MaxFES are 
to be listed in the paper. ) 

Table III. Results for 10D 

Func. Best Worst Median Mean Std 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

13      

14      

15      

 
Table IV. Results for 30D 

… 



Algorithm Complexity 

Table V. Computational Complexity 

Func. 1 / 0T T


 

1  

2  

…  
                        14 

 15  

 
Parameters 
 
a) All parameters to be adjusted 

b) Corresponding dynamic ranges 

c) Guidelines on how to adjust the parameters 

d) Estimated cost of parameter tuning in terms of number of FES 

e) Actual parameter values used 

 

3.4 Sorting method 
 
In CEC 2014 [2], the mean and median values at the maximum allowed number of evaluations were 
used to score algorithms. For each problem, the algorithm with the best result scored 9, the second 
best scored 6, the third best scored 3 and all the others score 0.  
 

Total score = 
24

1
i

i

score

 (using mean value) + 

24

1
i

i

score

 (using median value) 

 
This scoring favours the algorithms which obtain good results on relatively simple problems. For 
computationally expensive optimisation, it is important to achieve acceptable results for complicated 
problems such as highly multimodal cases. It has been proposed that we directly sort the sum of all 
mean values of 15 problems for 10 and 30 dimensions.  Thus, in this competition, mean values and 
median values obtained by each algorithm on all 15 problems for 10 and 30 dimensions will be 
summed up as the final score of the algorithm. 
 

Total score = 
15 15 15 15

1 1 1 110 30 10 30

(f ) (f ) (f ) (f )a a a a
i i i iD D D D

mean mean median median
      

       

For each problem and given dimension,  0.50.5a MaxFEs MaxFEsf f f    gives the averaged best 

function objective value with 100% and 50% of MaxFEs for each run. 
 
Special attention will be paid to which algorithm has advantage on which kind of problems, 
considering dimensionality and problem characteristics.  
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