
Problem Definitions and Evaluation Criteria for CEC 2015
Special Session on Bound Constrained Single-Objective

Computationally Expensive Numerical Optimization

Q. Chen1, B. Liu2 and Q. Zhang3, J. J. Liang4, P. N. Suganthan5, B. Y. Qu6

1 Facility Design and Instrument Institute, China Aerodynamic Research and Development Center, China

2 Department of Computing, Glyndwr University, UK
3 Department of Computer Science, City University of Hong Kong, Hong Kong & School of Computer Science

and Electronic Engineering, University of Essex, UK.
4 School of Electrical Engineering, Zhengzhou University, Zhengzhou, China

5 School of EEE, Nanyang Technological University, Singapore
6 School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China

b.liu@glyndwr.ac.uk, qingfu.zhang@cityu.edu.hk, chenqin1980@gmail.com

liangjing@zzu.edu.cn, epnsugan@e.ntu.edu.sg, qby1984@hotmail.com

Many real-world optimization problems require computationally expensive simulations for evaluating
their candidate solutions. For practical reasons such as computing resource constraints and project
time requirements, optimization algorithms specialized for computationally expensive problems are
essential for the success in industrial design. Often, canonical evolutionary algorithms (EA) cannot
directly solve them since a large number of function evaluations are required which is unaffordable in
these cases. In recent years, various kinds of novel methods for computationally expensive
optimization problems have been proposed and good results with only limited function evaluations
have been published.

To promote research on expensive optimization, we successfully organized a competition focusing on
small- to medium-scale real parameter bound constrained single-objective computationally expensive
optimization problems at CEC 2014 [2]. For 8 functions with 10/20/30 decision variables, results
were collected and compared. The discussions during the special session of CEC2014 on
computationally expensive optimization encouraged us to organize this competition and special
session. This year, we choose 15 new benchmark problems and propose a more challenging
competition within CEC 2015. The benchmark includes more composite problems and hybrid
problems [1].

We request participants to test their algorithms on the 15 black-box benchmark functions with 10 and
30 dimensions. The participants are required to send the final results (corresponding to their finally
accepted paper) in the format given in this technical report to the organizers (~ March 2015). The
organizers will conduct an overall analysis and comparison. The participants with the best results
should also be willing to release their codes for verification before declaring the eventual winners of
the competition.

The JAVA, C and Matlab codes for CEC’15 test suite can be downloaded from the website given
below: http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015

1. Introduction of the CEC’15 expensive optimization test problems

1.1 Common definitions

All test functions are minimization problems defined as follows:
min f(x), T

1 2[, ,...,]Dx x xx

where D is the dimension of the problem, T
1 1 2[, ,...,]i i i iDo o oo is the shifted global optimum (defined

in “shift_data_x.txt”), which is randomly distributed in [-80,80]D. Each function has a shift data for
CEC’15. All test functions are shifted to o and scalable. For convenience, the same search ranges are
defined for all test functions as [-100,100]D.

In real-world problems, it is seldom that there rarely exist linkages among all variables. The decision
variables are divided into subcomponents randomly. The rotation matrix for each sub-component is
generated from standard normally distributed entries by Gram-Schmidt ortho-normalization with
condition number c that is equal to 1 or 2.

1.2 Summary of CEC’15 expensive optimization test problems

Table I. Summary of the CEC’ 15 expensive optimization test problems
Categories No Functions Related basic functions *

iF

Unimodal
functions

1 Rotated Bent Cigar Function Bent Cigar Function 100
2 Rotated Discus Function Discus Function 200

Simple
Multimodal
functions

3 Shifted and Rotated Weierstrass Function Weierstrass Function 300
4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 400
5 Shifted and Rotated Katsuura Function Katsuura Function 500
6 Shifted and Rotated HappyCat Function HappyCat Function 600
7 Shifted and Rotated HGBat Function HGBat Function 700
8 Shifted and Rotated Expanded Griewank’s

plus Rosenbrock’s Function
Griewank’s Function
Rosenbrock’s Function

800

9 Shifted and Rotated Expanded Scaffer’s F6
Function

Expanded Scaffer’s F6 Function 900

Hybrid
funtions

10 Hybrid Function 1 (N=3) Schwefel's Function
Rastrigin’s Function
High Conditioned Elliptic Function

1000

11 Hybrid Function 2 (N=4) Griewank’s Function
Weierstrass Function
Rosenbrock’s Function
Scaffer’s F6 Function

1100

12 Hybrid Function 3 (N=5) Katsuura Function
HappyCat Function
Griewank’s Function
Rosenbrock’s Function
Schwefel’s Function
Ackley’s Function

1200

Composition
functions

13 Composition Function 1 (N=5) Rosenbrock’s Function
High Conditioned Elliptic Function
Bent Cigar Function
Discus Function
High Conditioned Elliptic Function

1300

14 Composition Function 2 (N=3) Schwefel's Function
Rastrigin’s Function
High Conditioned Elliptic Function

1400

15 Composition Function 3 (N=5) HGBat Function
Rastrigin’s Function
Schwefel's Function
Weierstrass Function
High Conditioned Elliptic Function

1500

Please note: These problems should be treated as black-box optimization problems and without any
prior knowledge. Neither the analytical equations nor the problem landscape characteristics extracted
from analytical equations are allowed to be used. However, the dimensionality and the number of
available function evaluations can be considered as known values and can be used to tune algorithms.

1.2 Definitions of basic functions

1) Bent Cigar Function

 2 6 2
1 1

2

() 10
D

i
i

f x x


  x (1)

2) Discus Function

 6 2 2
2 1

2

() 10
D

i
i

f x x


 x (2)

3) Weierstrass Function

max max

3
1 0 0

() ([cos(2 (0.5))]) [cos(2 0.5)]
D k k

k k k k
i

i k k

f a b x D a b 
  

     x (3)

where a=0.5, b=3, and kmax=20.

4) Modified Schwefel’s Function

4
1

1/2

2

() 418.9829 (), +4.209687462275036e+002

sin() if 500

(500)
() (500 mod(,500))sin(500 mod(,500)) if 500

10000

(mod(,500) 500)sin(mod(,5

D

i i i
i

i i i

i
i i i i

i i

f D g z z x

z z z

z
g z z z z

D

z z



   




    



x

2(500)
00) 500) if 500

10000
i

i

z
z

D







 

   


 (4)

5) Katsuura Function

 1.2

1032

5 2 2
11

2 (2)10 10
() (1)

2

j jD
i i D

j
ji

x round x
f i

D D


  x (5)

6) HappyCat Function

1/ 4

2 2
6

1 1 1

() (0.5) / 0.5
D D D

i i i
i i i

f x D x x D
  

      x (6)

7) HGBat Function

1/ 2

2 2 2 2
7

1 1 1 1

() () () (0.5) / 0.5
D D D D

i i i i
i i i i

f x x x x D
   

       x (7)

8) Expanded Griewank’s plus Rosenbrock’s Function
 8 11 10 1 2 11 10 2 3 11 10 1 11 10 1() ((,)) ((,)) ... ((,)) ((,))D D Df f f x x f f x x f f x x f f x x    x (8)

9) Expanded Scaffer’s F6 Function
Scaffer’s F6 Function:

2 2 2

2 2 2

(sin () 0.5)
(,) 0.5

(1 0.001())

x y
g x y

x y

 
 

 

 9 1 2 2 3 1 1() (,) (,) ... (,) (,)D D Df g x x g x x g x x g x x    x (9)

10) Rosenbrock’s Function

1

2 2 2
10 1

1

() (100() (1))
D

i i i
i

f x x x





   x (10)

11) Griewank’s Function

2

11
1 1

() cos() 1
4000

DD
i i

i i

x x
f

i 

   x (11)

12) Rastrigin’s Function

 2
12

1

() (10cos(2) 10)
D

i i
i

f x x


  x (12)

13) High Conditioned Elliptic Function

1

6 21
13

1

() (10)
iD
D

i
i

f





 x x (13)

14) Ackley’s Function

 2
14

1 1

1 1
() 20exp(0.2) exp(cos(2)) 20

D D

i i
i i

f x x e
D D


 

      x (14)

2. Definitions of the CEC’15 Expensive Test Suite

2.1 Unimodal Functions

1) Rotated Bent Cigar Function

 1 1 1 1() (()) *F f F  Mx x o (15)

Figure 1. 3-D map for 2-D function

Properties:
 Unimodal
 Non-separable
 Smooth but narrow ridge

2) Rotated Discus Function
 2 2 2 2() (()) *F f F  Mx x o (16)

Figure 2. 3-D map for 2-D function

Properties:
 Unimodal
 Non-separable
 With one sensitive direction

2.2 Simple Multimodal Functions

3) Shifted and Rotated Weierstrass Function

 3
3 3 3

0.5()
() (()) *

100
F f F


 M

x o
x (17)

Figure 3. 3-D map for 2-D function

Properties:
 Multi-modal
 Non-separable
 Continuous but differentiable only on a set of points

4) Shifted and Rotated Schwefel’s Function

 4
4 4 4

1000()
() (()) *

100
F f F


 M

x o
x (18)

Figure 4(a). 3-D map for 2-D function

Figure 4(b).Contour map for 2-D function

Properties:
 Multi-modal
 Non-separable
 Local optima’s number is huge and second better local optimum is far from the global

optimum.

5) Shifted and Rotated Katsuura Function

 5
5 5 5

5()
() (()) *

100
F f F


 M

x o
x (19)

Figure 5(a). 3-D map for 2-D function

Figure 5(b).Contour map for 2-D function

Properties:
 Multi-modal
 Non-separable
 Continuous everywhere yet differentiable nowhere

6) Shifted and Rotated HappyCat Function

 6
6 6 6

5()
() (()) *

100
F f F


 M

x o
x (20)

Figure 6(a). 3-D map for 2-D function

Figure 6(b).Contour map for 2-D function

Properties:
 Multi-modal
 Non-separable

7) Shifted and Rotated HGBat Function

 7
7 7 7

5()
() (()) *

100
F f F


 M

x o
x (21)

Figure 7(a). 3-D map for 2-D function

Figure 7(b).Contour map for 2-D function

Properties:

 Multi-modal
 Non-separable

8) Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function

 8
8 8 8

5()
() (() 1) *

100
F f F


  M

x o
x (22)

Figure 8(a). 3-D map for 2-D function

Figure 8(b).Contour map for 2-D function

Properties:
 Multi-modal
 Non-separable

9) Shifted and Rotated Expanded Scaffer’s F6 Function

 9 9 9 9() (() 1) *F f F   Mx x o (23)

Figure 9. 3-D map for 2-D function

Properties:

 Multi-modal
 Non-separable

2.3 Hybrid Functions

In real-world optimization problems, different subsets of the variables may have different
properties. In this set of hybrid functions, the variables are randomly divided into some
subsets and then different basic functions are used for different subsets.

 *

1 1 1 2 2 2() () () ... () ()N N NF g g g F    M M Mx z z z x (24)

F(x): hybrid function
gi(x): ith basic function used to construct the hybrid function
N: number of basic functions

1 2 1 2 1 11 1 1 1 2

1 2
1 1

1 2

1 2

[, ,...,]

[, ,...,], [, ,...,],..., [, ,...,]

where, - and (1:)

n n n n n N N D
n ni i

i k

N

S S S S S S N S S S

i S randperm D

    
  

 

  

 

z = z z z

z y y y z y y y z y y y

y x o

 (25)

ip : used to control the percentage of gi(x)

ni: dimension for each basic function
1


N

i
i

n D

1

1 1 2 2 1 1
1

, ,..., ,
N

N N N i
i

n p D n p D n p D n D n


 


                (26)

10) Hybrid Function 1 (N=3)

p = [0.3, 0.3, 0.4]
g1: Modified Schwefel's Function f4
g2: Rastrigin’s Function f12
g3: High Conditioned Elliptic Function f13

11) Hybrid Function 2 (N=4)

p = [0.2, 0.2, 0.3, 0.3]
g1: Griewank’s Function f11
g2: Weierstrass Function f3
g3: Rosenbrock’s Function f10
g4: Scaffer’s F6 Function f9

12) Hybrid Function 3 (N=5)

p = [0.1, 0.2, 0.2, 0.2, 0.3]
g1: Katsuura Function f5
g2: HappyCat Function f6
g3: Expanded Griewank’s plus Rosenbrock’s Function f8
g4: Modified Schwefel’s Function f4

g5: Ackley’s Function f14

2.4 Composite Functions

1

() { *[()]} *
N

i i i i
i

F g bias f 


  x x (27)

F(x): composition function
gi(x): ith basic function used to construct the composition function
N: number of basic functions
oi: new shifted optimum position for each gi(x), define the global and local optima’s

position
biasi: defines which optimum is global optimum

i : used to control each gi(x)’s coverage range, a small i give a narrow range for that
gi(x)

i : used to control each gi(x)’s height

iw : weight value for each gi(x), calculated as below:

2

1

2
2

1

()
1

exp()
2

()

D

j ij
j

i D
i

j ij
j

x o

w
D

x o







 






 (28)

Then normalize the weight
1

/
n

i i i
i

w w


 

So when ix o ,
1

 for 1, 2,...,
0j

j i
j N

j i



  

, () *if x bias f 

The optimum which has the smallest bias value is the global optimum. The composition
function merges the properties of the sub-functions better and maintains continuity around the
global/local optima.

13) Composition Function 1 (N=5)

N= 5， = [10, 20, 30, 40, 50]
 = [1, 1e-6, 1e-26, 1e-6, 1e-6]
bias = [0, 100, 200, 300, 400]
g1: Rotated Rosenbrock’s Function f10
g2: High Conditioned Elliptic Function f13
g3: Rotated Bent Cigar Function f1
g4: Rotated Discus Function f2
g5: High Conditioned Elliptic Function f13

Figure 10(a). 3-D map for 2-D function

Figure 10 (b).Contour map for 2-D function

Properties:
 Multi-modal
 Non-separable
 Asymmetrical
 Different properties around different local optima

14) Composition Function 2 (N=3)

N = 3
 = [10, 30, 50]
 = [0.25, 1, 1e-7]
bias = [0, 100, 200]
g1: Rotated Schwefel's Function f4
g2: Rotated Rastrigin’s Function f12
g3: Rotated High Conditioned Elliptic Function f13

Figure 11(a). 3-D map for 2-D function

Figure 11(b).Contour map for 2-D function

Properties:

 Multi-modal
 Non-separable
 Asymmetrical
 Different properties around different local optima

15) Composition Function 3 (N=5)

N = 5
 = [10, 10, 10, 20, 20]
 = [10, 10, 2.5, 25, 1e-6]
bias = [0, 100, 200, 300, 400]
g1: Rotated HGBat Function f7
g2: Rotated Rastrigin’s Function f12
g3: Rotated Schwefel's Function f4
g4: Rotated Weierstrass Function f3
g5: Rotated High Conditioned Elliptic Function f13

Figure 12(a). 3-D map for 2-D function

Figure 12(b).Contour map for 2-D function

Properties:
 Multi-modal
 Non-separable
 Asymmetrical
 Different properties around different local optima

3. Evaluation criteria

3.1 Experimental setting:

 Number of independent runs: 20
 Maximum number of exact function evaluations:

o 10-dimensional problems: 500
o 30-dimensional problems: 1,500

 Initialization: Any problem-independent initialization method is allowed.
 Global optimum: All problems have the global optimum within the given bounds and there is

no need to perform search outside of the given bounds for these problems, as solutions out of
the given bounds are regarded as invalid solutions.

 Termination: Terminate when reaching the maximum number of exact function evaluations or
the error value (* *()i i xF F) is smaller than 310 .

3.2 Results to record:

(1) Current best function values:

Record current best function values using 0.01MaxFES , 0.02MaxFES ,…, 0.09MaxFES , 0.1MaxFES ,
0.2MaxFES , …, MaxFES for each run. Sort the obtained best function values after the maximum
number of exact function evaluations from the smallest (best) to the largest (worst) and present the
best, worst, mean, median and standard deviation values for the 20 runs. Error values smaller than 810
are taken as zero.

(2) Algorithm complexity:

For expensive optimization, the criterion to judge the efficiency is the obtained best result vs. number
of exact function evaluations. But, the computational overhead on surrogate modeling and search is
also considered as a secondary evaluation criterion. Considering that for different data sets, the
computational overhead for a surrogate modeling method can be quite different, the computational
overhead of each problem is necessary to be reported. Often, compared to the computational cost on
surrogate modeling, the cost on 500 and 1500 function evaluations can almost be ignored. Hence, the
following method is used:

a) Run the test program below:

for i=1:1000000

x= 0.55 + (double) i;

x=x + x; x=x/2; x=x*x; x=sqrt(x); x=log(x); x=exp(x); x=x/(x+2);

end

Computing time for the above=T0;

b) The average complete computing time for the algorithm = 1T


The complexity of the algorithm is measured by: 1/ 0T T


.

(3) Parameters:

Participants are requested not to search for the best distinct set of parameters for each
problem/dimension/etc. Please provide details on the following whenever applicable:

a) All parameters to be adjusted
b) Corresponding dynamic ranges
c) Guidelines on how to adjust the parameters
d) Estimated cost of parameter tuning in terms of number of FEs
e) Actual parameter values used.

(4) Encoding

If the algorithm requires encoding, then the encoding scheme should be independent of the specific
problems and governed by generic factors such as the search ranges, dimensionality of the problems,
etc.

(5) Results format

The participants are required to send the final results as the following format to the organizers (after
submitting the final accepted paper version) and the organizers will present an overall analysis and
comparison based on these results: Create one txt document with the name
“AlgorithmName_FunctionNo._D_expensive.txt” for each test function and for each dimension. For
example, PSO results for test function 5 and D=30, the file name should be
“PSO_5_30_expensive.txt”.

The txt document should contain the mean and median values of current best function values when
0.1MaxFES , 0.2MaxFES , …, MaxFES are used of all the 20 runs. The participant can save the results in
the matrix shown in Table II and extracts the mean and median values.

Table II Information matrix for function X
 0.01MaxFES 0.02MaxFES … MaxFES
Run 1
Run 2
…
Run 20

Note: All participants are allowed to improve their algorithms further after submitting the initial
version of their papers to CEC2015 for review. They are required to submit their results in the
required format to the organizers after submitting the final version of your accepted paper as soon as
possible. Considering the surrogate modeling for 30 dimensional functions is often time consuming,
especially for MATLAB users, results using 10 runs are sufficient for the first submission.

3.3 Results template

Language: Matlab 2008a

Algorithm: Surrogate model assisted evolutionary algorithm A

Results

(Note: Considering the length limit of the paper, only Error Values Achieved with MaxFES are
to be listed in the paper.)

Table III. Results for 10D

Func. Best Worst Median Mean Std

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table IV. Results for 30D

…

Algorithm Complexity

Table V. Computational Complexity

Func. 1 / 0T T


1

2

…
 14

 15

Parameters

a) All parameters to be adjusted

b) Corresponding dynamic ranges

c) Guidelines on how to adjust the parameters

d) Estimated cost of parameter tuning in terms of number of FES

e) Actual parameter values used

3.4 Sorting method

In CEC 2014 [2], the mean and median values at the maximum allowed number of evaluations were
used to score algorithms. For each problem, the algorithm with the best result scored 9, the second
best scored 6, the third best scored 3 and all the others score 0.

Total score =
24

1
i

i

score

 (using mean value) +

24

1
i

i

score

 (using median value)

This scoring favours the algorithms which obtain good results on relatively simple problems. For
computationally expensive optimisation, it is important to achieve acceptable results for complicated
problems such as highly multimodal cases. It has been proposed that we directly sort the sum of all
mean values of 15 problems for 10 and 30 dimensions. Thus, in this competition, mean values and
median values obtained by each algorithm on all 15 problems for 10 and 30 dimensions will be
summed up as the final score of the algorithm.

Total score =
15 15 15 15

1 1 1 110 30 10 30

(f) (f) (f) (f)a a a a
i i i iD D D D

mean mean median median
      

     

For each problem and given dimension,  0.50.5a MaxFEs MaxFEsf f f   gives the averaged best

function objective value with 100% and 50% of MaxFEs for each run.

Special attention will be paid to which algorithm has advantage on which kind of problems,
considering dimensionality and problem characteristics.

References
1. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari, "Problem

Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization", Technical Report, Nanyang Technological University, Singapore, May 2005 AND
KanGAL Report #2005005, IIT Kanpur, India.

2. B. Liu, Q. Chen and Q. Zhang, J. J. Liang, P. N. Suganthan, B. Y. Qu, "Problem Definitions and
Evaluation Criteria for Computationally Expensive Single Objective Numerical Optimization",
Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou
China and Technical Report, Nanyang Technological University, Singapore, December 2013.

